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Abstract

Data-driven model reference control allows for the design of a controller from input and
output data when a parametric model of the system is not available. It is already known
how to do this for discrete-time systems. In this thesis we propose to generalize model
reference control to continuous-time systems. Moreover, it is demonstrated how the sta-
bility of the closed loop system can be guaranteed by using the small-gain theorem. The
proposed methods are used to design an analog controller for a continuous-time system.

Keywords: data-driven controller tuning; model reference control; frequency domain ap-
proach; nonparametric; frequency response function

II



Table of Contents

Acknowledgements I

Abstract I

Table of Contents IV

List of Abbreviations V

A frequency domain approach to data-driven control 1

1 Introduction 1

2 Preliminaries 2
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 LTI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Single sine excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Perfect reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Frequency response function estimation . . . . . . . . . . . . . . . . . 5
2.7 Multisine excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.8 Measurement set-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8.1 Zero-order hold set-up . . . . . . . . . . . . . . . . . . . . . . . 9
2.8.2 Band-limited set-up . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 System transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10 Frequency domain methods . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.12 Periodic signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.13 Transient suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.13.1 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.13.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . 17

2.14 Local polynomial method . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.14.1 Response of a system excited by a periodic input . . . . . . . . 19
2.14.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.14.3 Variance estimate . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.14.5 Choice of the order and degrees of freedom . . . . . . . . . . . 23

2.15 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.15.1 Noisy input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.15.2 Filtered white noise . . . . . . . . . . . . . . . . . . . . . . . . 23
2.15.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.16 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Appendices 27
2.A Transient term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.B DFT of white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.C Covariance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Model reference control 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Convex cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III



3.4 Other cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Correlation-based approach . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Translation to the frequency domain . . . . . . . . . . . . . . . . . . . 35

3.6.1 Disadvantages of TD . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Nonparametric estimate . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Parseval’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Weighted nonlinear least squares . . . . . . . . . . . . . . . . . . . . . 41
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.11 Discrete-time simulations . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11.2 Simple system . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.11.3 Long transient system . . . . . . . . . . . . . . . . . . . . . . . 51
3.11.4 System with non realizable controller . . . . . . . . . . . . . . . 53

3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendices 57
3.A Division by auto-power spectrum . . . . . . . . . . . . . . . . . . . . . 57
3.B DFT of cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.C Unstable systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.C.1 Correlation-based approach . . . . . . . . . . . . . . . . . . . . 59
3.C.2 Nonparametric estimate . . . . . . . . . . . . . . . . . . . . . . 60

4 Guaranteed stability 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Small-gain theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Stability constraints . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Better stability constraints . . . . . . . . . . . . . . . . . . . . 63

5 Real experiment 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Nonparametric estimate . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3 Controller realization . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.4 Closed loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Conclusion 76

Software 77

Bibliography 78

IV



List of Abbreviations

BLA Best linear approximation
CL Closed loop
CT Continuous-time
DC Direct current
DFT Discrete Fourier transform
DT Discrete-time
FD Frequency domain
FRF Frequency response function
HF High-frequency
IDFT Inverse discrete Fourier transform
LPM Local Polynomial Method
LTI Linear time-invariant
MSE Mean squared error
NSR Noise-to-signal ratio
OPAMP Operational amplifier
RMS Root mean square
SNR Signal-to-noise ratio
TD Time domain
WNLS Weighted nonlinear least squares
ZOH Zero-order hold

V



Chapter 1

Introduction
Systems that react to stimuli are all around us. However, many systems don’t behave as
we want them to. Control theory is a framework that allows engineers to find ways to
manipulate these stimuli in order to get these systems to behave as they want them to.
Traditionally, the first step to controlling a system is to model the underlying system. If the
system is a linear time-invariant (LTI) system, it can be modelled by a transfer function
or state space equations. This transfer function or state space model is a parametric
representation of the system. When a parametric model of the system is obtained, a
controller can be designed for it.

A model of an LTI system can be obtained by applying a well-designed input to the
system and measuring the corresponding output.

Data-driven control is an attempt to skip the modelling part of this process. Instead
of going from data to a parametric model to a controller, a controller is found directly
from data. This is illustrated in figure 1.1.

One such data-driven approach is model reference control [1]. The idea is to define
a reference model and to tune a controller such that the closed loop system is as close
as possible to the reference model. However, as will be shown in chapter 3, the name
“data-driven” can be a bit misleading. In fact, it will be shown that a nonparametric
model is hidden in the maths. A nonparametric model differs from a parametric model
in the sense that the parametric model tries to describe the data using a relatively small
amount of parameters. A nonparametric model still has parameters, but the amount of
parameters can be equal to the number of data points. Concretely, applied to LTI systems,
a parametric model could be a transfer function where the parameters are the coefficients
of the numerator and denominator. A nonparametric model of an LTI system could be
the frequency response function at different frequencies.

Chapter 2 gives an introduction to nonparametric models of LTI systems. Chapter
3 explains model reference control and shows that there is an underlying nonparametric
model in the maths. Chapter 4 shows how stability can be guaranteed in model reference
control in the absence of a parametric model and in chapter 5 model reference control is
used to design a controller for a real system.

Data Model Controller

Data-driven
control

Traditional
control

Figure 1.1 – Traditional control vs. data-driven control.
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Chapter 2

Preliminaries
2.1 Introduction

A refresher about linear time-invariant systems is given here. Afterwards, this section
focuses on frequency domain (FD) methods for estimating nonparametrically the frequency
response function (FRF). White noise and system transients are analysed in the FD. It is
important to understand how white noise manifests itself in the frequency domain as it
will increase the variability of the nonparametric estimate of the FRF. System transients
not only increase the variability of the FRF estimates but also introduce a bias error.
Therefore, it is also important to study its properties so that it can be accounted for during
nonparametric estimation of the FRF. Finally, this chapter ends with some advanced
methods to suppress transients and noise in FRF estimation.

2.2 LTI systems

Linear time-invariant (LTI) systems can be represented in different ways. In this work,
we will use the transfer function (TF) representation for single-input single-output (SISO)
systems.

G(Ω) =
B(Ω)

A(Ω)

with

Ω =

{
s if working in continuous-time (CT)

z−1 if working in discrete-time (DT)

and B(Ω) and A(Ω) being polynomials of Ω. For now, we will keep our focus on CT systems.
In CT, the output of this system is given by

y(t) = F−1{Y (jω)} = F−1{G(jω)U(jω)} = F−1{G(jω)F{u(t)}}

With F and F−1 denoting the Fourier transform and inverse Fourier transform respectively.

F{x(t)}}(jω) =

∫ +∞

−∞
x(t)e−jωtdt

F−1{X(jω)}(t) =
1

2π

∫ +∞

−∞
X(jω)ejωtdω

Because a convolution in the time domain (TD) becomes a multiplication in the frequency
domain, the output in the FD is simply found by performing a multiplication.

Y (jω) = G(jω)U(jω) (2.1)

2
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2.3 Single sine excitations

Assume that the input u(t) of the system is a complex exponential with a single frequency.

u(t) = ej(ωut+φ)

In the FD this becomes
U(jω) = 2πejφδ(ω − ωu)

With δ denoting the Dirac delta function. Using (2.1) gives the output in the FD

Y (jω) = 2π|G(jωu)|ej(φ+∠G(jωu))δ(ω − ωu)

Transforming back to the TD we find

y(t) = |G(jωu)|ej∠G(jωu)ej(ωut+φ) = |G(jωu)|ej∠G(jωu)u(t)

Since the system is linear and real, this result can be used to calculate the output of the
system if the input is a cosine wave.

u(t) = cos (ωut+ φ) =
ej(ωut+φ) + e−j(ωut+φ)

2

After a brief calculation, the output is found to be given by

y(t) = |G(jωu)| cos (ωut+ ∠G(jωu) + φ)

To summarize, if the input of a system is a cosine wave, then the output will be a cosine
wave with the same frequency, but with a different phase and amplitude determined by
the value of the transfer function at that frequency.

2.4 Discrete Fourier transform

Using the Fourier transform is not practical as it requires an infinite amount of data and
an infinite time resolution to compute. The discrete Fourier transform (DFT) solves both
of these problems.

The DFT of a sequence x(n), n = 0, 1, . . . , N − 1 is defined as

X(k) = DFT{x(n)} =
1

N

N−1∑
n=0

x(n)e−j2πkn/N , k ∈ Z

X(k) is periodic with period N , so k is usually confined to k = 0, 1 . . . , N − 1. Usually,
the DFT is defined without the factor 1

N . However, this will simplify the notation in this
work. The inverse DFT (IDFT) is defined in a similar way.

x(n) = IDFT{X(k)} =

N−1∑
k=0

X(k)ej2πkn/N , n ∈ Z
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2.5 Perfect reconstruction

The question now is: under which conditions can we perfectly reconstruct a CT signal x(t)

from a DT measurement?

xd(n) = x(nTs) , n = 0, . . . , N − 1

It is simpler to see when this is the case by working in the FD. The question then becomes:
under which conditions does the DFT of xd(n) contain the same information as the Fourier
transform of x(t)?

Periodicity First, as the DFT has a limited spectral resolution, the Fourier spectrum
of the continuous signal must also be discrete. This is the case when the CT signal is
periodic. If the CT signal has a period T

x(t) = x(t+ T ) ∀t

then the Fourier spectrum of x(t) will consist of Dirac delta functions with a fixed spacing
between the Dirac pulses.

X(ω) = F{x(t)} =

+∞∑
n=−∞

cnδ(ω − nω0) , ω0 =
2π

T

Leakage Next, the DFT frequencies should coincide with the Dirac pulses to avoid
leakage. The DFT bins k correspond to certain frequencies depending on the sampling
frequency fs and the number of samples N .

ωk = 2πk
fs
N

= 2πk
1

NTs
= 2πk

1

Tmeas

Tmeas = NTs is the measurement time. The lowest frequency of the CT signal ωsignal needs
to correspond to one of the DFT frequencies in order to avoid leakage.

ωsignal = ωk ⇒ Tmeas = kTsignal

In simple words: the measurement time must contain an integer number of periods of the
CT signal.

Aliasing Finally, the famous Nyquist-Shannon sampling theorem states that the CT
signal x(t) must not contain frequency components higher than half the sampling frequency.

fmax <
fs
2

To summarize, a CT signal is perfectly reconstructable from a sampled version of it
in a limited time window if the DFT contains the same information as the CT Fourier
transform. This is the case when the following conditions are met:

� The CT signal is periodic.

� The measurement time contains an integer number of periods.

� The bandwidth of the signal does not exceed half the sampling frequency.
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2.6 Frequency response function estimation

If the input and output of an LTI system satisfy the conditions of perfect reconstructability,
then the transfer function can be calculated at the excited frequencies. Taking the input to
be a periodic single sine as before results in a sine in the output with the same frequency.

u(t) = cos (ωut+ φ)⇒ y(t) = |G(jωu)| cos (ωut+ ∠G(jωu) + φ)

In the FD this becomes
Y (jωu) = G(jωu)U(jωu)

Assuming that the excited frequency corresponds to one of the DFT frequencies ωu = ωk =

2πkfs/N and |ωk| < πfs fulfils the last 2 conditions of perfect reconstructability respectively.

U(jωk) = 2πU(k)δ(ω − ωk) , Y (jωk) = 2πY (k)δ(ω − ωk)

With U(k) and Y (k) being the k-th DFT bin of ud(n) and yd(n) respectively. Note that the
factor 2π is just a consequence of how the Fourier transform and the DFT are defined. In
the end, we are interested in ratios, so this won’t matter. This means that

Y (k) = G(jωk)U(k) (2.2)

Finally, the value of the frequency response function at s = jωk can be calculated as

G(jωk) =
Y (k)

U(k)

2.7 Multisine excitations

Using a single sine excitations allows to calculate the value of the FRF at one single
frequency. We can make use of the linearity of LTI systems to calculate the FRF at
multiple frequencies at once. This is where a multisine excitation can be useful.

u(t) =
∑

k∈Kexc

Ak sin(ωkt+ φk) , ωk = 2πk
fs
N
, Kexc ⊆ {n ∈ Z|0 ≤ n < N/2}

In the FD this gives

U(k) =
Ak
2j
ejφk , k ∈ Kexc

By using (2.2) the output is

Y (k) = G(jωk)
Ak
2j
ejφk , k ∈ Kexc

Thus, the FRF can be calculated for all k ∈ Kexc.

G(jωk) =
Y (k)

U(k)
, k ∈ Kexc (2.3)

Magnitude choice The magnitude of the sine components Ak can be chosen by the
user. This can be useful when noise occurs in a certain frequency band. More power
can be attributed to this frequency band to get a better signal-to-noise ratio at those
frequencies.



CHAPTER 2. PRELIMINARIES 6

Phase choice The phases of the sine components φk can also be chosen by the user. A
concise example is given to see what the consequences are of choosing a different phase.
Two possibilities are shown here.

A linear phase multisine is the simplest case: all the sine components have the same
phase

φk = 0

In a random phase multisine the phases of the sine components have random phases
drawn from a uniform distribution between 0 and 2π.

φk ∼ U(0, 2π)

Two multisines with the same RMS values are shown in figure 2.1. One has a linear
phase, while the other has a random phase. The magnitude spectrum of both are the same.
However, the linear phase multisine peaks at t = 0, while the power of the random phase
multisine is more evenly distributed over time. This can be useful when the generator has
a limited range due to saturation. Even though both signals contain the same power, the
random phase multisine is less likely to saturate.

0 20 40 60 80 100

t(s)

-2

0

2

4

u(t)

Linear phase

Random phase

0 0.1 0.2 0.3 0.4 0.5

Frequency (Hz)

0

0.1

0.2

|U|

Linear phase

Random phase

Figure 2.1 – Comparison between a linear phase multisine and a random phase multisine
with the same RMS value.
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Example Consider a DT system.

G(z−1) =
0.4097z−1 + 0.407z−2

1− 1.165z−1 + 0.9813z−2
(2.4)

This system is excited by the random phase multisine shown in figure 2.2. The normalized
frequency is the frequency divided by the sampling frequency. 0.5 represents the Nyquist
frequency fs/2. The steady state output of this system is shown in figure 2.3. Then the
FRF can be calculated by using (2.3) at the excited frequencies. The actual FRF and
calculated FRF are plotted in figure 2.4.

0 20 40 60 80 100

n

-2

0

2

u(n)

0

0.05

0.1

0.15
|U|

0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Figure 2.2 – Input of the second-order system. Random phase multisine.

0 20 40 60 80 100

n

-20

0

20
y(n)

0 0.1 0.2 0.3 0.4

Normalized frequency

-40

-20

0

20

|Y|
dB

Figure 2.3 – Output of the second-order system.
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0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

-80

-60

-40

-20

0

20

40

|G|
dB

Actual

Estimated

Figure 2.4 – Magnitude FRF of the second-order system and the estimated FRF at the
excited frequencies using (2.3).
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2.8 Measurement set-ups

2.8.1 Zero-order hold set-up

In a lot of measurement set-ups, the input signal is generated digitally with a zero-order
hold (ZOH). This means that the signal is kept constant for a whole sampling period. At
the sampling instants, a CT system G(s) preceded by a ZOH can be modelled exactly as
a DT system. [2, eq. (34)]

GZOH(z) = (1− z−1)Z
{
L−1

{G(s)

s

}
|t=nTs

}
(2.5)

The ZOH measurement set-up is shown in figure 2.5. In this case, the actuator Gact(s)

is part of the FRF that is measured. The dynamics of the measurement device Gy(s) must
be calibrated perfectly (Gy(s) = 1) if one wants to measure the FRF from generator to
output. Note that, in theory, the ZOH set-up is not allowed to contain anti-alias filters.

Figure 2.5 – Zero-order hold measurement set-up. Red indicates which parts are modelled.
Taken from [3].

Thus, if no anti-alias filter is used at the output and assuming that the actuator is
perfect Gact(s) = 1, when a CT system is excited with a ZOH and is sampled, we are
actually measuring the ZOH version of the FRF and not the CT FRF directly. This is
bad news if we want to measure the CT FRF G(s). However, this can be circumvented.
When |f | � fs/2, there isn’t a big difference between the CT FRF G(s) and the ZOH
version of G(s).

G(j2πf) ≈ GZOH(ej2πfTs) (2.6)

So, when the goal is to measure a CT FRF with a ZOH set-up, care must be taken
to stay within the region where this approximation holds. This can be accomplished
by making sure that the highest excited frequency in the input signal is well below the
sampling frequency of the measurement set-up.

fmax � fs/2

Example Consider a second order system.

G(s) =
ω2

0

s2 + 2ζω0s+ ω2
0

with ω0 = 2π0.3[rad/s] and ζ = 0.01

Applying the ZOH transformation (2.5) to this system with fs = 2Hz results in the DT
system that was used in previous examples (2.4). The magnitude FRF of both the CT
system and the ZOH version of it are plotted in figure 2.6. Notice that the DT system
has a periodic FRF while the CT system does not. Moreover, at the low frequencies, both
FRFs overlap. The approximation (2.6) is worse once the frequency gets close to fs/2.
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0 0.5 1 1.5 2

Frequency (Hz)

-80

-60

-40

-20

0

20

40
Magnitude (dB)

|G(s)|

|G
ZOH

(z
-1

)|

Figure 2.6 – Magnitude FRF of the second-order system and the magnitude FRF of the
ZOH version of it with fs = 2Hz.

2.8.2 Band-limited set-up

Even if one uses a high sampling frequency fs, the actuator dynamics will still influence
the measurement of the FRF when using a ZOH set-up. This is not an issue when a
band-limited set-up is used. The band-limited set-up is shown in figure 2.7. In a band-
limited set-up, the input to the system can still be generated by a ZOH. But the input to
the system must be measured and an anti-alias filter must be used to avoid aliasing. By
measuring the input to the system, the dynamics of the actuator won’t be part of the FRF
estimate. The output of the system must also go through an anti-alias filter before being
measured. A relative calibration is needed if one wants to measure the FRF from the input
to the output. Concretely this means that the ratio of the anti-alias filters Gy(s)/Gu(s)

must be taken into account when processing the measurements.

Figure 2.7 – Band-limited measurement set-up. Red indicates which parts are modelled.
Taken from [3].
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2.9 System transients

The first condition of perfect reconstructability (periodicity) implies that the signal has
been repeating forever until now and will repeat forever in the future. This is not realistic;
when a system is excited, the excitation must have started at some time in the past and
must end at some point in the future. In the example of the previous section we had briefly
mentioned that the measurements were taken in steady state. Concretely, the input was
applied to the system for 20 periods and only the last period was used for the analysis,
thereby ensuring that the system transients have faded away. This can be quantified
by calculating the RMS of the difference between the output of the p-th period and the
output of the last period. This is plotted in figure 2.8. The RMS of the difference decreases
exponentially. If the measurements were noisy, the RMS of the difference would decrease
until the transients are below noise level, at which point the transients can be said to have
faded away. In this case, the RMS of the difference reaches approximately 10−7 by the
20-th period, which is negligible for our purposes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Period p

10
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-2

10
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2

RMS of difference between p-th and last period

Figure 2.8 – RMS of the difference between the output of every period and the output of
the last period.

It turns out that the transient term is just a rational function added on top of the
steady state output spectrum.

Y (k) = G(e−j2πk/N )U(k) + T (k) (2.7)

with

T (k) =
I(e−j2πk/N )

A(e−j2πk/N )

I(e−j2πk/N ) is a polynomial in e−j2πk/N whose coefficients depend on the difference
between samples from the previous period and samples from the current period. This
is proven for DT systems in appendix 2.A. The transient term for CT systems will be
discussed afterwards.

If u(n) and y(n) are periodic, then T (k) = 0, because I(e−j2πk/N ) only depends on the
difference between the in- and output at the end of the current period and the in- and



CHAPTER 2. PRELIMINARIES 12

output at the end of the previous period. In this case (2.7) simplifies to what we had
before.

Y (k) = G(e−j2πk/N )U(k)

A key property of the transient term T (k) is that it is a “smooth” function of the
frequency k. This is due to the fact that it is a rational form of e−j2πk/N . This property
can be used to suppress the transient, as will be explained later. Another property of
T (k) is that its denominator is the same as the denominator of G(e−j2πk/N ). Therefore,
the transient term will “resemble” the shape of the FRF.

CT transients Similar results can be derived for CT systems [4].

Y (k) = G(jω)U(k) + T (k) + δ(k)

In this case, the numerator of T (k) depends on the difference in initial conditions at t = 0

and t = T = nTs: [dpy
dtp

(T )− dpy

dtp
(0)
]

and
[dpu
dtp

(T )− dpu

dtp
(0)
]

with p ∈ N and p < max (na, nb), na and nb being the order of the denominator and
numerator of G(s) respectively. An additional term δ(k) pops up. This is the alias error
and it can be generated when the transient T (jω) overextends into the aliasing frequencies
f > fs/2. It is present even if the signals have been low-pass filtered. Because the alias
error δ(k) is also smooth, it can be grouped together with the transient term T (k).
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Example Again, the same second-order system (2.4) of the previous section is used.
This time we will take a look at the estimation error.

Gest(e
−j2πk/N )−G(e−j2πk/N ) =

Y (k)

U(k)
−G(e−j2πk/N )

=
G(e−j2πk/N )U(k) + T (k)

U(k)
−G(e−j2πk/N )

=
T (k)

U(k)

As the magnitude spectrum of u(n) is flat, the magnitude of the estimation error will be
proportional to the magnitude of the transient term.

The estimation error for the FRF estimated from the first and 20th period is shown in
figure 2.9. The error of the FRF calculated from the last period is around −150dB, which
is negligible. In other words, there is no transient term as the system is in steady state.
The error for the first period is a smooth function of the frequency and “resembles” the
shape of the transfer function as expected.
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Figure 2.9 – Magnitude FRF of the second-order system and the estimation errors of the
FRF at the excited frequencies using (2.3) for the data from the first period and the 20th
period.

2.10 Frequency domain methods

Till now we have been treating CT and DT systems as separate cases. However, FD
methods can be generalized to both CT and DT systems. There is no reason why a FD
method should only work for one and not the other. To generalize these methods it is
useful to define Ω to encompass both CT and DT models. Ω can either be s or z−1.

Ω =

{
s if working in continuous-time (CT)

z−1 if working in discrete-time (DT)

Thus, denoting an LTI system as G(Ω) is not specific to CT or DT systems. When the
FRF is evaluated in the DFT frequencies ωk = 2πkfs/N it, is denoted Ωk.

Ωk =

{
jωk = j2πkfs/N if working in continuous-time (CT)

e−jωkTs = e−j2πk/N if working in discrete-time (DT)
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2.11 White noise

White noise is a random signal with a flat power spectrum. A zero-mean Gaussian sequence
is white noise.

v(n) ∼ N (0, σ2)

Let’s assume that a measurement is perturbed by this white noise.

x(n) = x0(n) + v(n)

Due to the linearity of the DFT one obtains

X(k) = X0(k) + V (k)

Thus it is interesting to understand the properties of the DFT of this white noise sequence.

V (k) =
1

N

N−1∑
n=0

v(n)e−j2πkn/N

It turns out that (see appendix 2.B)

E{V (k)} = 0

E{|V (k)|2} =
1

N
σ2

E{V 2(k)} = 0 if mod(2k,N) 6= 0

2.12 Periodic signals

What happens to the DFT spectrum when we apply a signal periodically? Let’s assume
that we have a sequence x̃(n) of length N with corresponding DFT

X̃(k) =
1

N

N−1∑
n=0

x̃(n)e−j2πkn/N

Now, the sequence x̃(n) will be repeated one more time to obtain a sequence of length 2N .

x(n) =

{
x̃(n) if 0 ≤ n < N − 1

x̃(n−N) if N ≤ n < 2N − 1

The DFT of x(n) is then given by

X(k) =
1

2N

2N−1∑
n=0

x̃(n)e−j2πkn/(2N) =
1

2N

N−1∑
n=0

x̃(n)e−j2πkn/(2N) +
1

2N

2N−1∑
n=N

x̃(n−N)e−j2πkn/(2N)

=
1

2N

N−1∑
n=0

x̃(n)e−j2πkn/(2N) +
1

2N

N−1∑
n=0

x̃(n)e−j2πkn/(2N)e−j2πk/2

=
1

N

N−1∑
n=0

x̃(n)e−j2πkn/(2N) 1 + e−j2πk/2

2

Evaluating this in 2k and 2k + 1 gives

X(2k) = X̃(k)

X(2k + 1) = 0

Thus, the even DFT lines will contain the information of X(k) and the odd DFT lines will
be zero.

This result can be generalized to a signal that is repeated P times.

X(kP + r) =

{
X̃(k) if r = 0

0 if r = 1, . . . , P − 1
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Example A random phase multisine (N = 40) is created where the 3 lowest DFT bins
are excited with an RMS value of 1. This signal is repeated P = 3 times. The repeated
signal is plotted in the TD and the FD in figure 2.10. It can be seen that in the periodic
signal there are P − 1 = 2 non-excited lines in between the excited lines.
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Figure 2.10 – A multisine is repeated 3 times.

2.13 Transient suppression

In section 2.9 it was shown that transients in the output will negatively impact the quality
of the FRF estimate. However, there are multiple ways to suppress these transients. The
most obvious way is to wait for the system to enter steady state and to only start measuring
once the transients have faded away. This is exactly what was done in the example of
section 2.9 (see figure 2.9). There are also ways to suppress the transient without throwing
away the measurements that are not in steady state. 3 of them will be discussed:

� Windowing

� Parametric estimation

� The local polynomial method
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2.13.1 Windowing

There are many possible windows that one can choose from. The Hann window is a
popular one.

w(n) =
1

2
[1− cos(

2πn

N
)] , n = 0, . . . , N − 1 (2.8)

The windowed input and output are then given by

uw(n) = w(n)u(n) and yw(n) = w(n)y(n)

A multiplication in the TD becomes a convolution in the FD.

UW (k) = W (k) ∗ U(k) and YW (k) = W (k) ∗ Y (k)

with W (k) = 1
2δ(k)− 1

4δ(k+1)− 1
4δ(k−1). The windowed estimate of the FRF is then given

by

GW (Ωk) =
YW (k)

UW (k)
(2.9)

Let’s now see why windowing will reduce the effect of the transient.

YW (k) = W (k) ∗ (G(Ωk)U(k) + T (k))

For the first term the following approximation can be made:

W (k) ∗ [G(Ωk)U(k)] ≈ G(ωk)[W (k) ∗ U(k)] = G(ωk)UW (k)

Hereby it is assumed that G(Ωk−1) ≈ G(Ωk) ≈ G(Ωk+1). In other words, G(Ω) is flat around
Ωk. (2.9) then becomes

GW (Ωk) ≈ G(Ωk) +
TW (k)

UW (k)

The trick now is to use the property that T (k) is a smooth function of the frequency. Let’s
assume that T (k) can be captured locally by a second order polynomial.

T (k) = ak2 + bk + c

Windowing T (k) gives

TW (k) ∝ 2T (k)− T (k + 1)− T (k − 1) = −2a

This is a bit like taking the second order derivative, which suppresses the transient.
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Example The DT system (2.4) is taken again. The same input as in figure 2.2 is used.
The estimation error of the FRF with and without windowing is shown in figure 2.11.
Windowing gives better results, except near the resonance frequency. This is because the
approximation that G(Ω) is flat does not hold in this region.
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Figure 2.11 – Comparison of FRF estimation error without and with Hann windowing.

2.13.2 Parametric estimation

Till now, only nonparametric estimates of the FRF were discussed. Unlike line-fitting,
where one is interested in the slope and offset of the line, the nonparametric estimate
does no such thing. The result of the nonparametric estimate is the FRF estimate at
every excited frequency. However, in a sense there are still parameters: these are the FRF
estimates at every frequency bin k ∈ Kexc.

The TF of the system is however still given by a rational function. The coefficients of
this rational function can be estimated. The transient term is also a rational function and
the parameters describing it can also be included in the estimation.

Y (k) = G(Ωk)U(k) + T (k)

Using G(Ωk) = B(Ωk)
A(Ωk) and T (k) = I(Ωk)

A(Ωk) the expression above can be rewritten as

A(Ωk)Y (k)−B(Ωk)U(k)− I(Ωk) = 0 (2.10)

A(Ωk) is a polynomial of order na and B(Ωk) is a polynomial of order nb. (2.18) in appendix
2.A is an explicit formula for I(Ωk). From this formula, it can be verified that I(Ωk) is a
polynomial of order nI with

nI = max (na, nb)− 1

For CT systems, there is also an alias error on top of the transient term. These errors can
also be captured well by a polynomial. Grouping the alias error together with the I(Ωk)

results in [4, Section 6.3.2.3]
nI ≥ max (na, nb)
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After a bit of calculations, (2.10) can be turned into


...

...
...

...
...

...
Y (k) . . . Y (k)Ωnak U(k) . . . U(k)Ωnbk 1 . . . ΩnIk

...
...

...
...

...
...





a0

...
ana
−b0

...
−bnb
−i0

...
−inI



= 0

This can be solved by calculating the right null-space of the first matrix. The coefficients
ip will capture the transient. Note that the null space is empty if the measurements are
noisy. We won’t go into these details in this work, so the interested reader is referred to
[5].

Example Again, the DT system (2.4) is used with the same input shown in figure 2.2.
The parameters are determined as described above. The resulting FRF estimation error
is plotted in figure 2.12. Note that as a parametric representation is obtained, the FRF
can be calculated at all frequencies. The error is around −300dB, which is MATLAB’s
precision. This means that the error is negligible and that the transient has been fully
suppressed.
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Figure 2.12 – FRF estimation error for the parametric estimation of the TF with transient
terms.

2.14 Local polynomial method

The idea of the local polynomial method (LPM) is quite simple. There are multiple
variants of the LPM, but here we will focus on the robust LPM for periodic excitations.
More information about all the variants of the LPM can be found in [4, Chapter 7].
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2.14.1 Response of a system excited by a periodic input

For the robust LPM for periodic signals to work, at least P = 2 periods must be measured.
Let’s assume for the sake of simplicity that the input ũ(n) is noiseless and in steady state.
ũ(n) is applied P consecutive times to the system. The spectrum of the input u(n) is

U(kP + r) =

{
Ũ(k) if r = 0

0 if r = 1, . . . , P − 1
(2.11)

It will resemble the spectrum shown in figure 2.10. Assuming that the output is perturbed
by additive noise, the output spectrum is given by

Y (kP + r) = G(kP + r)U(kP + r) + T (kP + r) +Ny(kP + r)

T (kP + r) is the transient term that arises from the fact that the system might not be in
steady state. Ny(kP + r) is additive noise that is added to the output. It can either be
white noise (see section 2.11) or filtered white noise. Using (2.11), we can be more specific
about the output spectrum.

Y (kP + r) =

{
G(kP )U(kP ) + T (kP ) +NY (kP ) if r = 0

T (kP + r) +NY (kP + r) if r = 1, . . . , P − 1

Example The system (2.4) is excited with the signal shown in figure 2.10. The output
is perturbed by Gaussian white noise with a standard deviation of 0.005. The input
and output spectra are plotted in figure 2.13. The output spectrum at the DFT lines
3, 6 and 9 are dominated by the G(kP )U(kP ) term. There is a peak around the 18-th
DFT line that corresponds to the transient term T . The 18-th DFT line corresponds to
the normalized frequency 18/(NP ) = 18/120 = 0.15, which corresponds to the normalized
resonance frequency of the system (see figure 2.12 for example). This is to be expected as
the transient resembles the shape of the transfer function. Finally, after the 30-th DFT
bin, the noise terms NY dominate the output.
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Figure 2.13 – Input and output of the DT system (2.4)
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2.14.2 Algorithm

Now we can finally discuss the algorithm of the robust LPM. The idea is to estimate the
contribution of the transient term at the excited frequencies using the data at the non-
excited frequencies. To this end, we will work in a window around every excited DFT bin.
In the case of the previous example, the excited bins are k = 1, 2 and 3. Two parameters
must be chosen by the user. The first one is the window size 2n. We must use n unexcited
bins before and after kP .

Example k = 3, P = 3, n = 4. We are working in a window around Y (kP ) = Y (9). We
must use 4 unexcited bins before and after 9.

Y (9 + ri) with ri = −5,−4,−2,−1, 1, 2, 4, 5

For every one of the unexcited lines the following holds

Y (kP + ri) = T (kP + ri) +NY (kP + ri)

The transient term can be modelled as a polynomial of r. This is because the transient is a
smooth function of the frequency. The order of the polynomial R is the second parameter
that the user can choose.

T (kP + r) ≈ T (kP ) +

R∑
s=1

ts(k)rs

We can then find the polynomial of best fit through the points Y (kP + ri)

Example continued Putting all the Y (9 + ri) into a vector and choosing R = 2 gives

Y (4)

Y (5)

Y (7)

Y (8)

Y (10)

Y (11)

Y (13)

Y (14)


=



1 (−5) (−5)2

1 (−4) (−4)2

1 (−2) (−2)2

1 (−1) (−1)2

1 1 12

1 2 22

1 4 42

1 5 52



T (9)

t1(3)

t2(3)

+



NY (4)

NY (5)

NY (7)

NY (8)

NY (10)

NY (11)

NY (13)

NY (14)


−→ Yn = KnΘ + Vn

The least squares solution is given by1

Θ̂ = (KH
n Kn)−1KH

n Yn

This results in an estimation of the transient term at the excited DFT bin T̂ (9). The other
terms t1(3) and t2(3) are not important.

Finally, the estimated transient term can be removed from the output spectrum at the
excited DFT line.

Ŷ (kP ) = Y (kP )− T̂ (kP )

Thus, the transient has been suppressed. The FRF can then be calculated simply as

Ĝ(Ωk) =
Ŷ (kP )

U(kP )

The entire procedure outlined here must be repeated for all k ∈ Kexc.

1Note that calculating the solution like this results in an ill-conditioned problem. The \ operator in
MATLAB solves this problem using QR-factorisation, which is better conditioned. (θ = Kn\Yn)
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2.14.3 Variance estimate

Having a variance estimate of the output spectrum is useful for providing uncertainty
bounds. It can also be used as a nonparametric weighting in parametric identification of
the system transfer function.

The residual is defined as the difference between the measured output spectrum and
the predicted output spectrum.

V̂n = Yn −KnΘ̂

Assuming that the variance of the noise is white (flat) in the window 2n, it can be used
to estimate the variance at every k ∈ Kexc.

σ̂2
Ŷ

(kP ) =
1

qnoise
V Hn Vn , with qnoise = 2n− (R+ 1) (degrees of freedom)

A proof of this is given in appendix 2.C and is based on [4, Appendix 7.B]. The reason why
we must divide by the degrees of freedom qnoise and not by 2n is because R+ 1 parameters
are estimated. This is analogous to the reason why the unbiased sample variance is
calculated by dividing by the number of observations minus 1 when the population mean
is also estimated.

As Ĝ(Ωk) = Ŷ (kP )/U(kP ), the variance of the FRF can be calculated as

σ̂2
Ĝ

(Ωk) =
σ̂2
Y (kP )

|U(kP )|2
(2.12)
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2.14.4 Example

The robust LPM is applied to measurements from the system (2.4). This time N = 16384

and P = 2. The first F = 5000 frequencies are excited with a random phase multisine
with an RMS value 1. White Gaussian noise is added to the output with σy = 0.2. This
corresponds to a signal-to-noise ratio (SNR) of 29.5dB. This number is calculated as
follows.

SNRdB = 10 log10

( 1
NP

∑NP−1
t=0 y0(t)2

σ2
y

)
= 29.5dB

The numerator is the mean of the squares of the noiseless output y0 and the denominator
is the power of the noise. The SNR is quite high as a consequence of the resonance that
is present in the transfer function. 100 noise realizations are simulated while keeping
the same random phase multisine as an input and the root-mean square (RMS) error is
calculated to get an idea of the effectiveness of the estimator.

RMS[|Ĝ−G|](Ωk) =

√√√√ 1

100

100∑
i=1

|Ĝ(i)(Ωk)−G(Ωk)|2

with Ĝ(i)(Ωk) being the nonparametric estimate of G(Ωk) for the i-th noise realization. The
parameters used for the LPM are R = 2, n = 6 which results in qnoise = 9 degrees of freedom.
To make the results more presentable, the data points are taken together in windows of
size 50 and are averaged. The results are shown in figure 2.14. Not taking the transient
into account is significantly worse around the resonance frequency of the system. The
transient resembles the FRF of the system, which is why the error is most pronounced
around the resonance frequency. However, far away from the resonance frequency, not
taking the transient into account is approximately 1 dB better than using the Robust
LPM. This is because the transient term is below the random noise contribution. The
robust LPM uses a noisy estimate of the transient and this estimate is subtracted from
the output spectrum, leading to an increased variance. Finally, the robust LPM seems to
be slightly better than windowing in this simulation.
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Figure 2.14 – Comparison of the RMS error for the nonparametric estimate acquired
without preprocessing, with windowing and with the robust LPM. R = 2, n = 6, qnoise = 9.
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2.14.5 Choice of the order and degrees of freedom

Two parameters can be chosen by the user when performing the robust LPM analysis: the
order of the polynomial approximation and the degrees of freedom used to estimate the
noise variance.

Order A good way to choose the order is to start at R = 2 and increment it in steps of
two until the estimate of the variance σ̂2

Ĝ
stops decreasing.

Degrees of freedom Increasing the degrees of freedom qnoise will increase the window
size 2n. This gives a better estimation of the variance. There is a trade-off however: it was
assumed that the noise variance is white (flat) in the window 2n. Thus, making the window
size too big will result in a loss of frequency resolution. Additionally, making the window
size 2n bigger means that the transient is approximated by a polynomial over a larger
window. At that point it might be necessary to increase the order R of the polynomial.

2.15 Generalization

Many things were simplified until now. A few of the assumptions that were made are:

� The input is noiseless.

� White Gaussian noise noise was simulated in the example, but what if the noise is
filtered white noise?

� There is no feedback from output to input.

� The input is a multisine. What about random excitations?

Each of these points will be discussed briefly.

2.15.1 Noisy input

Of course, the measurement of the input can be noisy. Thankfully, the robust LPM is also
able to estimate the input noise variance for periodic excitations. Given that the input is
not known perfectly, the estimate of the FRF variance (2.12) is not correct any more. In
general, the variance of an FRF estimate Ĝ(Ωk) can be approximated by

σ̂2
Ĝ

(k) = |Ĝ(Ωk)|2
(
σ̂2
Y (k)

|Ŷ (k)|
+
σ̂2
U (k)

|Û(k)|
− 2Re

(
σ̂2
Y U (k)

Y (k)U(k)

))

The equation above is only applicable when the excitation is periodic and when the
FRF is estimated by dividing the output spectrum Y (k) by the input spectrum U(k). It is
also possible to estimate the variance of the noise for arbitrary excitations, but different
formulas must be used [4, Section 2.6].

2.15.2 Filtered white noise

For simplicity sake, filtered white noise at the sampling instants is defined as

v(n) = S(z−1)e(n) , with e(n) ∼ N (0, σ2)

The power spectrum of this noise is not flat. This also means that the noise samples can
be correlated over time.

∃n,m with n 6= m such that E{v(n)v(m)} 6= 0
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An important consequence of filtered white noise is that there will also be noise transients
in the measurements.

V (k) = S(Ωk)E(k) + TS(Ωk)

As the input of the noise filter is random, the noise transients will never fade away. This
means that when one waits long enough for the system G(Ω) to enter steady state, there
will still be noise transients in the measurements. This is where the LPM can also be
useful.

2.15.3 Feedback

Consider the measurement set-up shown in figure 2.15. An LTI system G(z−1) is in negative
feedback and the output is perturbed by process noise.

G(z-1)

v(n)

y(n)
u(n)

r(n)
+

-

Figure 2.15 – LTI system in negative feedback with additive process noise.

The Z-transform of the output and input are given by

Y (z) =
G

1 +G
R(z) +

1

1 +G
V (z)

U(z) =
1

1 +G
R(z)− 1

1 +G
V (z)

Noise that affects the output also affects the input due to the feedback. Two possibilities
will be considered: r(n) is a multisine and r(n) is a random signal. Assuming that the
process noise v(n) is a Gaussian white noise sequence with variance σ2

v we get

E{V (k)} = 0 and E{|V (k)|2} = σ2
v(k)/N

r(n) is a multisine In this case we can apply multiple periods P to the system. It is
assumed that enough time has passed for the system transients to fade away and the noise
transients will be neglected.

Y (p)(k) =
G(Ωk)

1 +G(Ωk)
R(p)(k) +

1

1 +G(Ωk)
V (p)(k)

U (p)(k) =
1

1 +G(Ωk)
R(p)(k)− 1

1 +G(Ωk)
V (p)(k)

The superscript (p) denotes the period of the measurement. The nonparametric FRF can
then be estimated with

Ĝ(Ωk) =
1
P

∑P
p=0 Y

(p)(k)

1
P

∑P
p=0 U

(p)(k)
(2.13)

Taking the limit for P →∞ will allow us to establish whether this estimator is consistent.

lim
P→∞

Ĝ(Ωk) =
E{Y (p)(k)}
E{U (p)(k)}

= G(Ωk)

The first equality applies the law of large numbers for independent experiments. And so
this estimator is indeed consistent.
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r(n) is an arbitrary signal For arbitrary signals it is not advised to use the estimator
(2.13) because a division by a small number is possible, resulting in an estimator that
won’t converge. Another thing that must be considered when working with arbitrary
signals is that arbitrary signals are aperiodic. If we want to get a better estimate of the
FRF we will need to cut the measurement into M pieces of N samples. If the total number
of samples NM is constant, this will results in a trade-off between the frequency resolution
fs/N and noise suppression. An estimator that is used for arbitrary signals is

Ĝ(Ωk) =
1
M

∑M
m=0 Y

(m)(k)U (m)(k)
1
M

∑M
m=0 U

(m)(k)U (m)(k)
(2.14)

Here there is no danger for the denominator to become small. This estimator is consistent
when only the output is perturbed by noise. However, in our case the input is also
perturbed. Taking the limit as M →∞ gives

lim
M→∞

Ĝ(Ωk) =
E{Y (m)(k)U (m)(k)}
E{U (m)(k)U (m)(k)}

=
SY U (k)

SUU (k)

with SY U being the cross-power spectrum between the output and input and SUU being
the auto-power spectrum of the input. Assuming that the reference is zero-mean Gaussian
white noise with variance σ2

r we get

E{R(k)} = 0 and E{|R(k)|2} = σ2
r(k)/N

and the using fact that R(k) and V (k) are uncorrelated we get the following result

lim
P→∞

Ĝ(Ωk) =
G(Ωk)σ2

r(k)− σ2
v(k)

σ2
r(k) + σ2

v(k)
6= G(Ωk)

Thus, the estimator (2.14) is inconsistent.

Indirect method It is possible to get around the problem of the estimator (2.14) by
also using the reference signal r(n). Instead of modelling the transfer function from input
(u) to output (y), we will model the transfer function from reference (r) to output (y) and
from reference (r) to input (u).

Ĝ(Ωk) =
1
P

∑P
m=0 Y

(m)(k)R(m)(k)
1
P

∑P
m=0 U

(m)(k)R(m)(k)
(2.15)

Doing some calculations brings us to

lim
M→∞

Ĝ(Ωk) =
E{Y (m)(k)R(m)(k)}
E{U (m)(k)R(m)(k)}

=
SYR(k)

SUR(k)
= G(Ωk)

Thus, by keeping the reference signal and using it, it is possible to get a consistent estimate
when using arbitrary excitations.
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2.16 Conclusion

Multisines can be used to estimate the FRF nonparametrically. The robust LPM allows for
the transients to be suppressed. Even if the system is in steady state, the noise transients
can still deteriorate the quality of the FRF estimate. This is a reason why the robust
LPM can be quite effective.

It is useful to keep the reference signal that is applied to the system. When the system
is excited by an arbitrary excitation, this information can be used to get a consistent
estimate of the FRF even if both the input and the output are perturbed by noise.

Finally, the authors of [4] offer MATLAB code that can perform the robust LPM
for periodic and arbitrary excitations. These MATLAB functions can also identify the
best linear approximation of a nonlinear system. These functions can also handle MIMO
systems.



Appendix
2.A Transient term

Suppose that a DT LTI system is of the following form.

a0y(n) + a1y(n− 1) + a2y(n− 2) = b0u(n) + b1u(n− 1) (2.16)

The DFT of a sequence is actually just a windowed version of the Z-transform. To see
this, the window is defined as

w(n) =

{
1/N, 0 ≤ n < N

0, otherwise

The windowed Z-transform of a sequence x(n) is then given by

Z{w(n)x(n)} =

+∞∑
n=−∞

w(n)x(n)z−n =
1

N

N−1∑
n=0

x(n)z−n

The expression above evaluated in z = ej2πk/N is equal to the DFT of x(n).

Z{w(n)x(n)}|z=ej2πk/N =
1

N

N−1∑
n=0

x(n)e−j2πkn/N = DFT{x(n)}

Thus, taking the windowed Z-transform of both sides of (2.16) and evaluating it in z =

ej2πk/N is the same as taking the DFT of both sides.
For simplicity, let’s only consider one of the terms.

apw(n)y(n− p)

ap is just a constant, so that can also be left out in the analysis.

Z{w(n)y(n− p)} =
1

N

N−1∑
n=0

y(n− p)z−n

After some manipulations:

NZ{w(n)y(n− p)} = z−p
N−1∑
n=0

y(n)z−n +

p−1∑
n=0

[y(n− p)− y(n− p+N)z−N ]z−n

Evaluating this expression in z = ej2πk/N gives

NZ{w(n)y(n− p)}|z=ej2πk/N =(e−j2πk/N )p
N−1∑
n=0

y(n)e−j2πkn/N

+

p−1∑
n=0

[y(n− p)− y(n− p+N)](e−j2πk/N )n

Note that z−N disappears because e−j2πNn/N = 1. The first term contains the DFT of y(n).
The second term is a polynomial in e−j2πk/N that depends on y(n − p) − y(n − p + N). In
other words, it depends on the difference between samples from the previous period and
samples from the current period.

Z{w(n)y(n− p)}|z=ej2πk/N = (e−j2πk/N )pY (k) + Iy,p(e
−j2πk/N )

27
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Applying this to (2.16) gives

Y (k)(

2∑
p=0

ap(e
−j2πk/N )p) = U(k)(

1∑
p=0

bp(e
−j2πk/N )p) + I(e−j2πk/N ) (2.17)

with

I(e−j2πk/N ) =

1∑
p=0

bpIu,p(e
−j2πk/N )−

2∑
p=0

apIy,p(e
−j2πk/N ) (2.18)

Notice that

G(z−1)|z=ej2πk/N = G(e−j2πk/N ) =
B(e−j2πk/N )

A(e−j2πk/N )
=

∑1
p=0 bp(e

−j2πk/N )p∑2
p=0 ap(e

−j2πk/N )p

Dividing (2.17) by A(e−j2πk/N ) then gives the final form

Y (k) = G(e−j2πk/N )U(k) + T (k) (2.19)

with

T (k) =
I(e−j2πk/N )

A(e−j2πk/N )
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2.B DFT of white noise

A white noise sequence v(n) has the following properties

E{v(n)} = 0

E{v(n)v(m)} = σ2δ(n−m)

The DFT of this white noise sequence is

V (k) =
1

N

N−1∑
n=0

v(n)e−j2πkn/N

E{V (k)} The expected value of V (k) is

E{V (k)} =
1

N

N−1∑
n=0

E{v(n)}e−j2πkn/N =
1

N

N−1∑
n=0

0 e−j2πkn/N = 0

E{V (k)V (l)} The expected value of V (k)V (l) is

E{V (k)V (l)} =
1

N2
E{

N−1∑
n=0

v(n)e−j2πkn/N
N−1∑
m=0

v(m)ej2πlm/N}

=
1

N2

N−1∑
n=0

N−1∑
m=0

E{v(n)v(m)}e−j2πkn/Nej2πlm/N

=
σ2

N2

N−1∑
n=0

N−1∑
m=0

δ(n−m)e−j2πkn/Nej2πlm/N

=
σ2

N2

N−1∑
n=0

e−j2π(k−l)n/N =

{
σ2

N if mod(k − l, N) = 0

0 otherwise

When k = l, this result becomes

E{|V (k)|2} =
σ2

N

E{V (k)V (l)} The expected value of V (k)V (l) is

E{V (k)V (l)} =
1

N2
E{

N−1∑
n=0

v(n)e−j2πkn/N
N−1∑
m=0

v(m)e−j2πlm/N}

=
1

N2

N−1∑
n=0

N−1∑
m=0

E{v(n)v(m)}e−j2πkn/Ne−j2πlm/N

=
σ2

N2

N−1∑
n=0

e−j2π(k+l)n/N =

{
σ2

N if mod(k + l, N) = 0

0 otherwise

When k = l and mod(2k,N) 6= 0, this result becomes

E{V 2(k)} = 0
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2.C Covariance estimation

The output spectrum in a window of size 2n around an excited frequency line is given by

Yn = KnΘ + Vn

The least squares solution is given by

Θ̂ = (KH
n Kn)−1KH

n Yn

A key assumption used to estimate the covariance CY (kP ) is that Vn is assumed to have a
flat power spectrum in the window 2n.

The residual is the difference between the measured spectrum and the predicted spec-
trum.

V̂n = Yn −KnΘ̂ = (I2n −Kn(KH
n Kn)−1KH

n )Yn = PnYn

Using the fact that PnKn = Kn −Kn = 0 we get

V̂n = PnVn

Next up, we want to to see how V̂ Hn V̂n relates to V Hn Vn.

V̂ Hn V̂n = V Hn PHn PnVn

First, it is easy to see that PHn = Pn. Next, it turns out that Pn is an idempotent matrix.

PnPn = (I2n −Kn(KH
n Kn)−1KH

n )(I2n −Kn(KH
n Kn)−1KH

n )

= I2n − 2Kn(KH
n Kn)−1KH

n +Kn(KH
n Kn)−1KH

n = Pn

Thus, we get
V̂ Hn V̂n = V Hn PnVn = trace(V Hn PnVn) = trace(PnVnV

H
n ) (2.20)

In this step we used the fact that the trace of a scalar is a scalar and the fact that matrices
in a trace can be circularly permuted (trace(ABC) = trace(BCA)). It is assumed that Vn
has a flat power spectrum in the window 2n, i.e. σ2

Y (kP + ri) = σ2
Y (kP ). This means that

E{VnV Hn } = σ2
Y (kP )I2n

Plugging this into (2.20) and taking the expected value gives

E{V̂ Hn V̂n} = σ2
Y (kP )trace(Pn) (2.21)

Pn is an idempotent matrix, meaning that its eigenvalues can only be 0 or 1. Additionally,
because Pn and Kn are each other’s orthogonal complement, the rank of Pn is related to
the rank of Kn.

PnKn = 0⇒ rank(Pn) = 2n− rank(Kn)

If Kn is full column rank and if Kn has more rows than columns, then the rank of Kn is
equal to the number of columns in Kn.

rank(Kn) = R+ 1

The trace of a matrix is the sum of the eigenvalues of a matrix. The sum of the eigenvalues
of Pn is exactly equal to the rank of Pn, because the rank of Pn is equal to the number of
nonzero eigenvalues and because the eigenvalues can only be 0 or 1.

trace(Pn) = rank(Pn) = 2n− (R+ 1) = qnoise

Finally, this explains why V̂ Hn V̂n must be divided by qnoise to get an unbiased estimate of
the covariance.

σ2
Y (kP ) =

E{V̂ Hn V̂n}
qnoise



Chapter 3

Model reference control
3.1 Introduction

The first part of this chapter is a summary of the work presented in [1]. From section 3.6
and on, improvements are made to the existing methods.

3.2 Problem statement

The goal of model reference control is to design a controller for a single-input single-output
system G(Ω). Traditionally, the first step in the design of a controller is to estimate a
parametric representation of G(Ω). In this chapter the modelling step will be skipped.
We will go directly from input-output data to the controller. It is assumed that input-
output measurements (u(n) and y(n) respectively) of the system operating in open loop
are available to the user. It is also assumed that G(Ω) is stable and minimum-phase. It is
also possible to extend this theory to unstable nonminimum-phase systems. This is done
in appendix 3.C.

The system is controlled by an unknown controller K(Ω, ρ) in closed loop (CL). This
is shown graphically in figure 3.1.

G(Ω) y(n)
u(n)

r(n)
+

-
K(Ω,ρ)

v(n)

Figure 3.1 – Closed loop system.

The transfer function from the reference r to the output y is given by

CL(Ω) =
K(Ω, ρ)G(Ω)

1 +K(Ω, ρ)G(Ω)

ρ =
[
ρ1 . . . ρnρ

]T
is a vector containing the controller parameters that should be opti-

mized. In this work K(Ω, ρ) is linear in the parameters.

K(Ω, ρ) = β(Ω)ρ (3.1)

with β(Ω) being a row vector with nρ elements. The idea of model reference control, is to
get the closed loop system “as close” as possible to a user-defined reference system M(Ω).

K(Ω, ρ)G(Ω)

1 +K(Ω, ρ)G(Ω)
≈M(Ω)

M(Ω) needs to be chosen such that it is a stable causal LTI system. Moreover, M(Ω) may
not be chosen equal to 1. The reason for this is explained further on. This “closeness”
criterion can be quantified by using the 2-norm of a transfer function.

Jmr(ρ) =
∣∣∣∣∣∣F (Ω)

[
M(Ω)− K(Ω, ρ)G(Ω)

1 +K(Ω, ρ)G(Ω)

]∣∣∣∣∣∣2
2

(3.2)

31
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F (Ω) is a user-defined weighing filter that can be chosen to highlight specific frequencies.
The 2-norm of a SISO system is defined differently for CT and DT systems. For CT
systems it is

||H(s)||22 =
1

2π

∫ +∞

−∞
|H(jω)|2dω

and for DT systems it is

||H(z−1)||22 =
1

2π

∫ π

−π
|H(ejω)|2dω

3.3 Convex cost

A key problem with the use of (3.2) as a cost function is that it is not convex. In order to
solve this, we must first define the ideal controller K∗(Ω) as

K∗(Ω) =
M(Ω)

G(Ω)(1−M(Ω))
(3.3)

This definition ensures that the closed loop system is equal to the reference system by
construction.

K∗(Ω)G(Ω)

1 +K∗(Ω)G(Ω)
= M(Ω)

Note that it is possible that K∗ is not realizable i.e.

@ρ such that K(Ω, ρ) = K∗(Ω)

For example, if K∗(Ω) is a polynomial of Ω of degree 4, then K(Ω, ρ) = ρ0 + ρ1Ω + ρ2Ω2 will
not be able to realize K∗(Ω) perfectly.

Next, both terms in (3.2) can be put on the same denominator.

M(Ω)− K(Ω, ρ)G(Ω)

1 +K(Ω, ρ)G(Ω)
=
M(Ω)− (1−M(Ω))K(Ω, ρ)G(Ω)

1 +K(Ω, ρ)G(Ω)

The sensitivity function is approximated by the ideal sensitivity function.

1

1 +K(Ω, ρ)G(Ω)
≈ 1

1 +K∗(Ω)G(Ω)
=

1

1 + M(Ω)
1−M(Ω)

= 1−M(Ω) (3.4)

The validity of this approximation should be verified afterwards. The sensitivity function
is the transfer function from the disturbance v(n) to the output y(n). It quantifies how
sensitive the output is to disturbances.

This approximation leads to the definition of the convex cost function.

J(ρ) =
∣∣∣∣∣∣F (Ω)(1−M(Ω))

[
M(Ω)− (1−M(Ω))K(Ω, ρ)G(Ω)

]∣∣∣∣∣∣2
2

(3.5)

Of course, not all forms of K(Ω, ρ) will make this cost function convex. However, it is
convex when K(Ω, ρ) is linear in the parameters (3.1). Note that the cost is minimized for
the ideal controller if the ideal controller is realizable.

K(ρ∗,Ω) = K∗(Ω) =⇒ J(ρ∗) = 0

Note that (3.5) contains the factor 1−M(Ω) as result of the approximation (3.4). If M(Ω)

is chosen as 1, (3.5) would be equal to 0, which is the reason why M(Ω) = 1 may not be
used.
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3.4 Other cost functions

We can devise many other cost functions that solve this problem. An example is the
following.

JK(ρ) = ||K∗(Ω)−K(Ω, ρ)||22 (3.6)

This cost function minimizes the square of the difference between the actual controller
K(Ω, ρ) and the ideal controller K∗(Ω). If K(Ω, ρ) is linear in the parameters, then this is
just a simple linear least squares regression. However, this is not the same as optimizing
ρ to the cost function (3.5) and will result in a different outcome. In fact, it can be shown
that (3.5) is a weighted linear least squares regression version of (3.6). By using (3.3) we
get

M(Ω) = G(Ω)(1−M(Ω))K∗(Ω)

Using this expression in (3.5) results in

J(ρ) =
∣∣∣∣∣∣F (Ω)(1−M(Ω))

[
G(Ω)(1−M(Ω))K∗(Ω)− (1−M(Ω))K(Ω, ρ)G(Ω)

]∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣F (Ω)(1−M(Ω))2G(Ω)

[
K∗(Ω)−K(Ω, ρ)

]∣∣∣∣∣∣2
2

Note that that J(ρ) depends on G(Ω) both directly and indirectly as K∗ also depends on
G(Ω). No expression for G(Ω) is known in the data-driven approach and it will therefore
have to be estimated. This shows that the choice of the cost function is an important part
of the optimization and must be done with care.

3.5 Correlation-based approach

As G(Ω) is not known in (3.5), the authors of [1] propose the correlation-based approach.
They give algorithms for periodic and arbitrary excitations. Here we will focus on their
equations concerning periodic excitations. We will also restrict this section to DT systems
(Ω = z−1), as they have done in their paper.

One thing to note, is that all the equations in [1] are written in the TD. These will be
translated to the FD in section 3.6. The reader is recommended to not spend too much
time trying to understand the definitions in this section as they will make more sense in
the next section.

Model First it is assumed that the output of the DT system is perturbed by some noise
v(n).

y(n) = G(q−1)u(n) + v(n) (3.7)

with q−1 being the backshift operator: q−1x(n) = x(n − 1). N denotes the period of the
input.

u(n) = u(n+N) (3.8)

The additive noise is modelled as DT filtered white noise.

v(n) = Sv(q
−1)ev(n) , with E{ev(n)} = 0 and E{ev(n)2} = σ2

Error signal Then a new quantity ε(n, ρ) is defined [1, eq. (15)].

ε(n, ρ) = M(q−1)u(n)−K(q−1, ρ)(1−M(q−1))y(n) (computational form)

= [M −K(ρ)(1−M)G]u(n)−K(ρ)(1−M)v(n) (analytic form)

In the second equality the operators q−1 are left out for clarity. The computational form
is used in practice because measurements u(n) and y(n) are available. The analytic form
is used to develop the theory further.
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Notice that when K(ρ) = K∗, the first term in the analytic form is zero.

ε∗(n) = −K∗(1−M)v(n)

Thus ε(n, ρ) is uncorrelated with u(n) when ρ = ρ∗. The main idea behind the correlation-
based approach is to tune the parameters ρ such that ε(n, ρ) becomes uncorrelated with
u(n). However, note that this reasoning only holds if K∗ is realizable with the proposed
controller scheme K(ρ). If K∗ is not realizable, then the first term [M − K(ρ)(1 −M)G]

will not be zero when replacing K(ρ) with the ideal controller K∗ and ε(n, ρ) will still be
correlated with u(n).

Input filtering Additionally, the filter W is defined [1, eq. (41)]

W (e−jωk) =
F (e−jωk)(1−M(e−jωk))

SUU (e−jωk)

ωk =
2πk

N
, k = 0, . . . , N − 1

SUU (e−jωk) is the DFT of the autocorrelation of u(n) [1, eqs. (38) and (39)].

Ruu(τ) =
1

N

N−1∑
n=0

u(n− τ)u(n) (3.9)

SUU (e−jωk) =

N−1∑
τ=0

Ruu(τ)e−jτωk (3.10)

If the system is in steady state, u(n− τ) is known for negative time indices by using (3.8).
If the experiment starts with zero initial conditions, then u(n− τ) = 0 for n− τ < 0.

The filter W is applied to the input u(n). As is remarked at the end of [1, Sec. 4.4], if
a parametric representation of SUU (q−1) is known, this filter can be applied in the TD.

uW (n) = W (q−1)u(n)

Note that this can be problematic if SUU (q−1) has zeros that are not on the unit circle,
as the filter W (q−1) will then be unstable. More information concerning this is given in
appendix 3.A.

Correlation criterion Then, the cross-correlation between between uW (n) and ε(n, ρ)

is calculated.

RuW ε(τ, ρ) =
1

NP

NP−1∑
n=0

uW (n− τ)ε(n, ρ) (3.11)

with P being the number of periods measured. Note that as in (3.9), uW (n − τ) can be
found by using (3.8) if the system is in steady state. If the system starts off in zero initial
conditions, uW (n− τ) = 0 for n− τ < 0.

The correlation criterion JNP,l1(ρ) can then be defined.

JNP,l1(ρ) =

l1∑
τ=−l1

R2
uW ε(τ, ρ) (3.12)

with l1 ≤ N/2 being a parameter that can be chosen by the user. The idea behind this
parameter l1 is discussed in detail in section 3.7. It is then proven in [1, Appendix II] that
(3.12) converges to (3.5) for N,P →∞ with probability 1 under certain conditions.

lim
N,P→∞

JNP,l1(ρ) = J(ρ) , w.p. 1

However, for finite data, it is proven that the estimator is biased [1, eq. (37)]. The bias is
discussed further in section 3.8.
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3.6 Translation to the frequency domain

In this section the results from the previous section will be translated to the FD. Here
we will show that a nonparametric estimate of the system G(Ω) is actually hidden in the
mathematics. Thus, even though the parametric modelling step is skipped, there is still a
nonparametric model.

3.6.1 Disadvantages of TD

There are some disadvantages of working in the TD. Here are some that are relevant to
this subject.

� TD filtering can only be done easily if the underlying system is a DT system.

� The filtering of u(n) with W (q−1) can only be performed in the TD if a parametric
representation of SUU (q−1) is known and if SUU (q−1) only has zeros on the unit circle.
(see appendix 3.A).

� If the system starts with zero initial conditions or in steady state, then the transient
response can be taken into account, as knowledge of the input and output signals are
known before they are applied. This makes it possible to calculate (3.9) and (3.11)
for n − τ < 0. However, if the system does not start with zero initial conditions
or in steady state, this approach will not work and the transient term will not be
suppressed.

These problems can be solved by working in the FD. To address the first point: FD
methods can also handle CT systems. For the second point: a convolution in the TD
will explode when the system is unstable. However, this is not a problem in the FD
as a convolution in the TD becomes a simple multiplication in the FD. Finally, for the
third point: the robust LPM (see section 2.14) is able to estimate nonparametrically the
frequency response function (FRF) from noisy input-output data, while suppressing the
transient term.

3.6.2 Nonparametric estimate

By translating the formulas of section 3.5 to the FD, it will become immediately apparent
that a nonparametric estimate of the FRF is being calculated. The first step in translating
the problem from the TD to the FD is to use Parseval’s theorem. According to Parseval’s
theorem, the sum of squares in the TD is equivalent to the sum of the norms squared
in the FD. The cost function (3.12) represents a sum of squares in the TD. Parseval’s
theorem will be discussed in greater detail in section 3.7.

Now, instead of calculating ε(n, ρ) in the TD, it can be calculated in the FD. Note
that this also makes the computations less intensive, as a convolution in the TD becomes
a multiplication in the FD. As the input to the system is assumed to be periodic with
period P , the frequencies Ωk will correspond to the DFT bins kP .

E(kP, ρ) = M(Ωk)U(kP )−K(Ωk, ρ)(1−M(Ωk))Y (kP )

Applying the filter W to u(n) can also be done in the FD.

UW (kP ) = W (Ωk)U(kP )

with

W (Ωk) =
F (Ωk)(1−M(Ωk))

SUU (e−jωk)
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The denominator SUU (e−jωk) is proportional to U(kP )U(kP ).

SUU (e−jωk) = NU(kP )U(kP ) (3.13)

This equivalence is proven in appendix 3.B. Then, the cross-power spectrum between ε(n, ρ)

and uW (n) is also calculated in the FD by doing a simple multiplication.

SUWE(Ωk, ρ) = NUW (kP )E(kP, ρ) (3.14)

Expanding (3.14) makes the link to the cost function (3.5) immediately apparent.

SUWE(Ωk, ρ) = U(kP )
F (1−M)

U(kP )U(kP )

(
MU(kP )−K(ρ)(1−M)Y (kP )

)
(3.15)

= F (1−M)
(
M −K(ρ)(1−M)Ĝ(Ωk)

)
(3.16)

with

Ĝ(Ωk) =
Y (kP )U(kP )

U(kP )U(kP )
=
Y (kP )

U(kP )
(3.17)

The index Ωk was left out in F , M and K for clarity. Ĝ(Ωk) is a nonparametric estimate
of the system. If Ĝ is replaced by the actual system G, then SUWE(Ωk, ρ) is exactly the
quantity being integrated over in (3.5).
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Thus, a nonparametric estimate of the system Ĝ can be found, followed by calculating
the cost function in the FD.

JN (ρ) =
1

|Kexc|
∑

k∈Kexc

∣∣∣H(Ωk, ρ)
∣∣∣2 (3.18)

with Kexc being the set of excited DFT bins, |Kexc| being the cardinality of this set and

H(Ωk, ρ) = F (Ωk)(1−M(Ωk))
[
M(Ωk)− (1−M(Ωk))K(Ωk, ρ)Ĝ(Ωk)

]
(3.19)

Proceeding in this way, we can be much more flexible with the manner in which we estimate
the FRF nonparametrically. Let’s take a closer look at the nonparametric estimator that
is hidden inside the formulas of the TD.

Ĝ(Ωk) =
Y (kP )

U(kP )

Now, let’s separate y(n) into its P periods y(p)(n).

y(p)(n) = y(n+ pP ) , p = 0, . . . , P − 1

We can also define the DFT for each of the periods.

Y (p)(k) =
1

N

N−1∑
n=0

y(p)(n)e−j2πkn/N , p = 0, . . . , P − 1

With these definitions we can get a better understanding of what Y (kP ) represents.

Y (kP ) =
1

NP

NP−1∑
n=0

y(n)e−j2π(kP )n/(NP )

=
1

NP

P−1∑
p=0

N−1∑
n=0

y(n+ pP )e−j2πkn/N =
1

P

P−1∑
p=0

Y (p)(k)

Thus, the nonparametric estimate becomes

Ĝ(Ωk) =
1
P

∑P−1
p=0 Y

(p)(k)

1
P

∑P−1
p=0 U

(p)(k)
(3.20)

This is a consistent estimator for the model (3.7). Indeed, if we translate (3.7) to the FD
we obtain

Y (p)(k) = G(Ωk)U (p)(k) + V (p)(k) , p = 0, . . . , P − 1

Given that the input is periodic U (p)(k) = U0(k), we get

Ĝ(Ωk) =

1
P

∑P−1
p=0

[
G(Ωk)U0(k) + V (p)(k)

]
U0(k)

= G(Ωk) +
1

U0(k)

1

P

P−1∑
p=0

V (p)(k)

The output noise is assumed to be Gaussian white noise, which means that E{V (k)} = 0.
Taking the limit for P →∞ gives

lim
P→∞

Ĝ(Ωk) = G(Ωk) +
1

U0(k)
E{V (k)} = G(Ωk) , w.p. 1

The law of large numbers for independent experiments is used in the first equation. Fol-
lowing the same lines, it can easily be verified that the estimator is also consistent if the
measurement of the input is noisy.

U (p) = U0(k) +N
(p)
U (k)
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3.7 Parseval’s theorem

Parseval’s theorem is very simple: the energy of the signal in the TD is the same as the
energy of the signal in the FD.

N−1∑
n=0

x(n)2 = N

N−1∑
k=0

|X(k)|2 (3.21)

with X(k) = DFT{x(n)}. The factor N is specific to the definition of the DFT that is used
in this work and will be different if another definition is used.

The cost function in the FD (3.18) is also the sum of squares.

JN (ρ) =
1

N

N−1∑
k=0

|H(Ωk, ρ)|2

According to Parseval’s theorem, the above sum is equivalent to a sum of squares in the
TD.

JN (ρ) =
1

N2

N−1∑
n=0

h(n, ρ)2 (3.22)

with h(n, ρ) being the IDFT of H(Ωk, ρ). If N → ∞, h(n, ρ) is the impulse response of the
system H(Ω, ρ). The trick that the authors use in [1] is the fact that the impulse response
of a stable system will fade away after some time.

∃l1 such that h(n) ≈ 0 for n > l1

Applying this approximation to the cost function (3.22), gives

JN (ρ) ≈ 1

N2

l1∑
n=0

h(n, ρ)2 (3.23)

Example Let’s take a very simple first order system.

H(z−1) =
0.2z−1

1− 0.8z−1
(3.24)

The first 51 samples of the impulse response of (3.24) are plotted in figure 3.2. Additionally,
the red dotted line shows the impulse response with a bit of additive Gaussian white noise.

0 10 20 30 40 50

Samples n

-0.05

0

0.05

0.1

0.15

0.2

0.25
Impulse response of H(z-1)

Noiseless

Noisy (
h
 = 0.01)

Figure 3.2 – Impulse response of (3.24) with and without additive Gaussian white noise.
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The approximate cost function of the signal in the TD 1
512

∑l1
n=0 h(n, ρ)2 is plotted in

figure 3.3 (blue full line). It quickly converges to the cost function of the signal in the FD
1
51

∑50
k=0 |H(k)|2. This is also the case for the noisy signal (dotted red line); it converges to

its cost in the FD. Ideally however, we would like the cost in the noisy case to be as close
to the actual, noiseless cost. This is not the case; there is a certain bias. In this case,
taking l1 = 10, would result in less bias, while still keeping the information that is needed.
This can also be seen in figure 3.2: the impulse response after n = 10 is at or below noise
level. Thus the impulse response after n = 10 does not contain much useful information
and will only contribute to a biased cost.

0 10 20 30 40 50

l
1

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005
Energy in the time domain (TD) and frequency domain (FD)

FD noisy (
h
 = 0.01)

TD noisy (
h
 = 0.01)

FD noiseless

TD noiseless

Figure 3.3 – Energy of the signal in the TD and the FD (divided by N).

In [1], l1 has a slightly different interpretation. As it can be seen in (3.12), the sum
goes from −l1 to l1. This is because the sum is taken over the cross-correlation of uW and
ε. The cross-correlation is meaningful for both positive and negative indices, which is why
the sum also extends into negative values of τ . The impulse response for negative indices
is zero for causal systems, which is why the sum starts at n = 0 in (3.23).
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3.8 Bias

Let’s quantify the bias that was mentioned in the previous section. Let’s assume that the
input is a periodic signal that excites all the DFT frequencies. The output is perturbed
by filtered white noise.

Y (p)(k) = G(Ωk)U0(k) + Sv(Ωk)V (p)(k)

with E{V (p)(k)} = 0 and E{|V (p)(k)|2} = σ2/N . The nonparametric estimate of the FRF is

Ĝ(Ωk) =
1
P

∑P−1
p=0 Y

(p)(k)

1
P

∑P−1
p=0 U

(p)(k)
= G(Ωk) +

1

U0(k)

1

P

P−1∑
p=0

Sv(Ωk)V (p)(k)

The statistical properties of this estimator are

E{Ĝ(Ωk)} = G(Ωk)

Var{|Ĝ(Ωk)|} =
1

NP

|Sv(Ωk)|2σ2

|U0(k)|2

|Sv(Ωk)|2σ2 quantifies the power of the noise at the k-th DFT bin and |U0(k)|2 quantifies
the energy of the signal at the k-th bin. This becomes evident when the RMS of the signals
is calculated.

RMS =

√√√√ 1

N

N−1∑
n=0

x(n)2 =

√√√√N−1∑
k=0

|X(k)|2

Thus, |Sv(Ωk)|2σ2

|U0(k)|2 is the noise-to-signal ratio at the k-th DFT bin.
Now we have the information we need to calculate the expected value of the cost

function.

JN (ρ) =
1

N

N−1∑
k=0

|H(Ωk, ρ)|2 =
1

N

N−1∑
k=0

∣∣∣∣∣F (Ωk)(1−M(Ωk))
[
M(Ωk)−(1−M(Ωk))K(Ωk, ρ)Ĝ(Ωk)

]∣∣∣∣∣
2

Taking the expected value gives

E{JN (ρ)} =
1

N

N−1∑
k=0

∣∣∣∣∣F (Ωk)(1−M(Ωk))
[
M(Ωk)− (1−M(Ωk))K(Ωk, ρ)G(Ωk)

]∣∣∣∣∣
2

+
1

N

N−1∑
k=0

1

NP

|Sv(Ωk)|2σ2

|U0(k)|2

∣∣∣∣∣F (Ωk)(1−M(Ωk))2K(Ωk, ρ)

∣∣∣∣∣
2

= J̃N (ρ) +
σ2

N2P

N−1∑
k=0

|F (Ωk)|2|1−M(Ωk)|4|K(Ωk, ρ)|2

SNR(k)

with J̃N (ρ) being the cost function in the noiseless case and SNR(k) = |U0(k)|2
|Sv(Ωk)|2σ2 . So, it

has been shown that the expected value of the cost function in the noisy case is not equal
to the noiseless cost function. This is not a problem if the second term does not depend
on ρ, as the optimization parameters that minimize E{JN (ρ)} would also minimize J̃N (ρ).
However, in this case the second term does depend on ρ, which is the cause of the noise
induced bias.

What if we now transform H(Ωk, ρ) to the TD using the IDFT and approximate the
cost function by only summing till l1?

JN (ρ) =
1

N

N−1∑
k=0

|H(Ωk, ρ)|2 =
1

N2

N−1∑
n=0

h(n, ρ)2 ≈ 1

N2

l1∑
n=0

h(n, ρ)2 = JN,l1(ρ)
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Because the sum only contains (l1 +1) noisy terms, the bias will be smaller compared with
the full sum. To be more specific, the bias will be a factor (l1 + 1)/N smaller. Thus the
expected value of the approximate cost function becomes

E{JN,l1(ρ)} ≈ J̃N (ρ) +
σ2

N2P

l1 + 1

N

N−1∑
k=0

|F (Ωk)|2|1−M(Ωk)|4|K(Ωk, ρ)|2

SNR(k)
(3.25)

Thus, the bias can be decreased by only taking the first l1 + 1 terms in the TD. However,
making l1 too small will invalidate the approximation JN (ρ) ≈ JN,l1(ρ). Additionally, the
bias can also be decreased by increasing the number of periods P , increasing the number
of samples per period N or by increasing the signal-to-noise ratio SNR(k).

3.9 Weighted nonlinear least squares

It is possible to reduce the variability by using a weighted cost function. The weights will
be based on the variance of the FRF estimate.

σ2
Ĝ

(Ωk) = E
{
|Ĝ(Ωk)− E{Ĝ(Ωk)}|2

}
The robust LPM can estimate the variance of the FRF estimate σ̂2

Ĝ
for systems excited

by periodic inputs. The weighted nonlinear least squares cost function is

JWNLS(ρ) =
1

|Kexc|
∑

k∈Kexc

|H(Ωk, ρ)|2

σ̂2
H(Ωk, ρ)

(3.26)

with Kexc being the set of excited DFT bins and

H(Ωk, ρ) = F (Ωk)(1−M(Ωk))
[
M(Ωk)− (1−M(Ωk))K(Ωk, ρ)Ĝ(Ωk)

]
and

σ̂2
H(Ωk, ρ) = σ̂2

Ĝ
(Ωk)

∣∣∣F (Ωk)(1−M(Ωk))2K(Ωk, ρ)
∣∣∣2

The expected value of (3.26) is

E{JWNLS(ρ)} =
1

|Kexc|
∑

k∈Kexc

|F (1−M)|2|M − (1−M)K(ρ)G|2

|F (1−M)2K(ρ)|2σ̂2
Ĝ

+
1

|Kexc|
∑

k∈Kexc

|F (1−M)2K(ρ)|2σ2
Ĝ

|F (1−M)2K(ρ)|2σ̂2
Ĝ

= J̃WNLS(ρ) +
1

|Kexc|
∑

k∈Kexc

σ2
Ĝ

(Ωk)

σ̂2
Ĝ

(Ωk)

with J̃WNLS(ρ) being the cost function when G(Ωk) is known exactly. The frequencies Ωk
are left out in the first equation for simplicity. The second term does not depend on
ρ, which means that the optimization parameters ρ that minimize E{JWNLS(ρ)} will also
minimize J̃WNLS(ρ). After all, the second term is just a constant independent of ρ.

Realizable ideal controller If the ideal controller is realizable, then

J̃WNLS(ρ∗) = 0

The convex cost function (3.18) is also zero in ρ = ρ∗ in the noiseless case. This means that
the original cost function (3.2), the convex cost function (3.5) and the WNLS cost function
(3.26) are all minimal in ρ = ρ∗. Therefore, if the ideal controller is realizable, then the
WNLS optimization has the potential to give a better estimate of the ideal controller as
the WNLS cost function also takes the noise variance into account.
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Non realizable ideal controller On the other, what happens if the ideal controller
is not realizable? In this case, the minimum of any of the costs will be greater than 0,
even in the noiseless case. Thus, the optimization parameters ρ that minimize the original
cost function, the convex cost function and the WNLS cost function will be different in
general.

Optimization strategy The cost function (3.26) is not convex any more as the de-
nominator also depends on the optimization parameters ρ. Thus, the minimization of
this cost function cannot be solved with convex optimization. It can be solved with the
Gauss-Newton algorithm. An initial estimate of ρ can be found by minimizing the convex
cost function (3.18). The danger however, is that this optimization might not converge to
the global minimum.

3.10 Summary

The steps that must be taken in order to find a controller using model reference control
are summarized in figure 3.4. Measurements of the (noisy) SISO system are given. These
are necessary for the optimization.

The user must then also define the reference model M(Ω) and the controller structure
K(Ω, ρ). Then, the user can choose one of the optimization criteria that were discussed in
the previous sections. This results in the optimal parameters ρopt, from which the optimal
controller K(Ω, ρopt) can be determined.

Given:
(Noisy) SISO system

Measure

Choose optimization
criterion:
- TD (with l1-trick) (3.12)
- FD (with l1-trick) (3.27)
- FD (without l1-trick) (3.18)
- WNLS (3.26)

Optimize

Choose:
- Reference M(Ω)
- Controller
structure K(Ω,ρ)

Controller:

Figure 3.4 – Flowchart of the steps taken in model reference control.
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3.11 Discrete-time simulations

3.11.1 Introduction

First, an important approximation was made in the previous sections. Initially, it was
assumed that the sensitivity function can be approximated by the ideal sensitivity function.

1

1 +K(Ω, ρ)G(Ω)
≈ 1

1 +K∗(Ω)G(Ω)

This was done in order to make the cost function convex. Thus we should verify after
optimization that the original cost function (3.2) can be approximated by the convex cost
function (3.5).

Jmr(ρ) ≈ J(ρ)

System models In order to compare the FD methods to the TD methods, we will
initially work with DT systems. 3 DT systems G(q−1) will be simulated. The first 2
systems will have a reference model M(q−1) that will be realizable by the proposed control
structure K(q−1, ρ). The third system will have a reference model that cannot be realized
by the proposed control structure. The systems, the reference models and the proposed
controller structures are given in table 3.1. These are also shown in figure 3.5. The systems
will start with zero initial conditions.

Name Simple system Long transient system

G(q−1)
0.25q−1

1− 0.75q−1

1.785q−1 + 1.701q−2

1 + 1.558q−1 + 0.9274q−2

M(q−1)
0.15q−1 − 0.075q−2

1− 1.6q−1 + 0.675q−2

0.1785q−1 + 0.3486q−2 + 0.1701q−3

1 + 0.7369q−1 − 0.2824q−2 − 0.7573q−3

K(ρ, q−1)
ρ0 + ρ1q

−1

1− q−1

ρ0 + ρ1q
−1

1− q−1

Realizable Yes Yes

Name System with non realizable controller

G(q−1)
0.7893q−3

1− 1.418q−1 + 1.59q−2 − 1.316q−3 + 0.886q−4

M(q−1)
0.1552q−3

1− 1.212q−1 + 0.3672q−2

K(ρ, q−1)
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4

1− q−1

Realizable No

Table 3.1 – Simulated system and the reference models.
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(b) Long transient system
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(c) System with non realizable
controller

Figure 3.5 – Magnitude bode plots of the system and the reference models.

Noise models The output of the systems will be perturbed by DT filtered Gaussian
white noise.

y(n) = G(q−1)u(n) + Sy(q−1)e(n) with e(n) ∼ N (0, σ2)

2 different noise models will be used:

� Sy(q−1) = 1, i.e white noise

� Sy(q−1) =
0.1105q−1 − 0.06831q−2 + 0.04222q−3 + 0.04222q−3 − 0.06831q−4 + 0.1105q−5

1− 0.3337q−1 − 0.3872q−2 − 0.1103q−3

The magnitude bode plots of the noise models are shown in figure 3.6. For every simulation
the noise standard deviation is set to σ = 0.2.
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Figure 3.6 – Magnitude bode plots of the noise models.

Optimization strategies As explained in the previous sections, there are multiple ways
to find the optimal controller.

First, the optimal ρ for a certain frequency resolution fs/N can be found by minimizing
(3.18) and by replacing Ĝ(Ωk) with the actual system G(Ωk). This can be done because
we are working in a simulation. Note however, that we are optimizing the convex cost
function. If the reference model M is realizable, then Jmr(ρ

∗) = J(ρ∗) = 0, which means
that, in the noiseless case, the parameters ρ that minimize the convex cost function will
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also minimize the original cost function. This is not the case any more if the reference
model is not realizable.

The TD method consists of minimizing (3.12) w.r.t. ρ. However, the parameter l1
must be chosen by the user. The maximum value that can be chosen for l1 is N/2.

The FD method consists of minimizing (3.18) w.r.t. ρ. The l1-trick can also be used
here by minimizing

JN,l1(ρ) =
1

N2

l1∑
n=0

h(n, ρ)2 (3.27)

with h(n, ρ) being the IDFT of H(Ωk, ρ). Notice that when l1 = N − 1, JN,l1(ρ) = JN (ρ) in
the FD.

Finally, the WNLS method will also be used by minimizing (3.26). This cost function
will be minimized by using the Gauss-Newton algorithm. The maximum number of it-
erations is set to 100 and the algorithm is stopped if the relative difference between the
previous and the next estimate is smaller than 10−10 for all ρi in ρ. An initial estimate for
ρ is found by using the FD method with l1 = N − 1. As there is no guarantee that this
optimization will converge to the global minimum, the optimization will also be started
at the optimal ρ for comparison. Of course, this can only be done because we are working
in a simulation.

Input The input will be a random phase multisine where all harmonics are excited. The
RMS of this multisine is 1 and it is repeated for P = 4 periods. None of the periods are
discarded. The number of samples per period is N = 255.

Nonparametric estimate The FD methods require a nonparametric estimate. Two
different nonparametric estimates are used. The first one is without any removal of sys-
tem and noise transients by using (3.20). The second way of obtaining a nonparametric
estimate is by using the robust LPM with order R = 2 and degrees of freedom qnoise = 1.
These values were obtained by using the heuristics mentioned in section 2.14.5. Finally,
the WNLS method needs the variance of the FRF estimate. This is also obtained via the
robust LPM.

Evaluation 100 noise realizations are simulated. The resulting controllers are compared
by evaluating the cost function with the real system G(Ω). Both the original cost function
and the convex cost function are calculated.

Jmr(ρ) =
1

127

127∑
k=1

∣∣∣M(Ωk)− K(Ωk, ρ)G(Ωk)

1 +K(Ωk, ρ)G(Ωk)

∣∣∣2
J(ρ) =

1

127

127∑
k=1

∣∣∣(1−M(Ωk))
[
M(Ωk)− (1−M(Ωk))K(Ωk, ρ)G(Ωk)

]∣∣∣2
where ρ is obtained by optimization for one noise realization with any of the methods.
Note that F (Ωk) = 1 in the above equations. The sum starts at 1 because DC is not
excited by the input. The sum ends at 127 because there are 127 excited harmonics in the
input. Then the cost of the controllers obtained from the different noise realizations can
be averaged.

J̄mr =
1

100

100∑
i=1

Jmr(ρ
(i))

J̄ =
1

100

100∑
i=1

J(ρ(i))
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where ρ(i) are the parameters obtained by optimizing the cost corresponding to the i-th
noise realization with one of the optimization methods. Note that TD methods with
different values of l1 are considered different and shouldn’t be mixed up when taking the
mean. Finally, the mean cost function can be expressed in decibels.

J̄mr|dB = 10 log10(J̄mr)

J̄ |dB = 10 log10(J̄)
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3.11.2 Simple system

Influence of l1 Let’s start by seeing how the choice of l1 influences the performance
of the resulting controller. The simple system is simulated with disturbing white output
noise as explained above. For the TD method, all values of l1 between 1 and bN/2c = 127

are tried for each noise realization. For the FD method, all values of l1 between 1 and
N − 1 = 254 are tried for each noise realization. The resulting closed loop systems that
are obtained by applying the FD method with l1 = 1, 17 and 254 are shown in figure 3.7.
The closed loop system resulting from l1 = 1 performs poorly and doesn’t get close to the
reference model M . The result is better when l1 = 254, but is best when l1 = 17.
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Figure 3.7 – Resulting CL systems for one white noise realization by applying the FD
method with different values of l1.
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The mean cost function for the TD and FD methods for different values of l1 are shown
in figure 3.8. The mean cost function has a bowl shape as a function of l1. This is because
too much information is thrown away when taking a too small l1. However, taking a large
l1 just increases the bias. This was also observed in the figure 3.7. One more thing to
note is that the original cost function Jmr coincides with the convex cost function J most
of the time. This means that the sensitivity function can be approximated quite well by
the ideal sensitivity function. The cost functions don’t coincide for the FD method when
l1 = 1. This is because the resulting closed loop system doesn’t come very close to the
reference model M , as can be seen figure 3.7.
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(a) TD method for different l1.
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(b) FD method for different l1 and suppression of the tran-
sient.

Figure 3.8 – Mean cost functions for 100 noise realizations, applied to the simple system
with a white noise model.

Transient suppression In the previous experiment, the transient was suppressed by
using the robust LPM. What will happen if the transient is not suppressed? The mean
cost function obtained when applying the FD methods with l1 = 254 with and without
transient suppression are given in table 3.2. Not suppressing the transient gives better
results. This is to be expected as the simple system has a very low transient. Moreover,
there are no noise transients because the noise is white.

Method J̄ |dB ¯Jmr|dB
Transient suppressed -31.74 -31.57

Transient not suppressed -34.86 -34.73

Table 3.2 – FD method with l1 = 254 applied to simple system with white noise. With
and without transient suppression.
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Let’s see what happens when the output is disturbed by coloured noise. The results
of the same experiment, but with coloured noise are shown in table 3.3. The results for
coloured noise are better than the results for white noise (table 3.2). However, this is an
unfair comparison as the SNR is not the same in both experiments (see figure 3.6). This
time, not suppressing the transient is still better.

Method J̄ |dB ¯Jmr|dB
Transient suppressed -50.99 -50.98

Transient not suppressed -52.51 -52.52

Table 3.3 – FD method with l1 = 254 applied to simple system with coloured noise. With
and without transient suppression.

To see why this is the case, we can look at the mean squared error (MSE) of the
nonparametric estimate of the transfer function over all the noise realizations. This is
plotted in figure 3.9. The estimate with transient removal is better around the transmission
zeros of the noise model. To understand why this is so, let’s assume that the noise model
is given by

Sy(q−1) =
C(q−1)

D(q−1)

In that case, the contribution of the noise on the output at the k-th bin is

C(Ωk)

D(Ωk)
E(k) +

IE(Ωk)

D(Ωk)
=
C(Ωk)E(k) + IE(Ωk)

D(Ωk)

with E(k) being the DFT of e(n) and IE(Ωk) being a polynomial in Ωk that depends on
the initial and end conditions of e(n). When C(Ωk) is small, the contribution of the noise
is mainly attributed to the transient term IE(Ωk)

D(Ωk) . Thus, the transient term is dominant
at transmission zeros of the noise model. However, at the other frequencies where the
random term C(Ωk)

D(Ωk)E(k) is dominant, the estimate of the FRF is slightly worse (around 1
dB) when taking the transient into account. As the optimization takes all the frequency
bins into account, an improvement around the transmission zeros is not enough to improve
the estimate of the optimal controller in this case.
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Figure 3.9 – MSE error of the nonparametric estimate of the simple system in the presence
of coloured noise with and without transient suppression.
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TD vs. FD vs. WNLS Let’s now compare the TD, FD and WNLS methods. For the
FD method, the transient can be either suppressed or not taken into account. The WNLS
method also uses a nonparametric estimate of the FRF, so here the transient can also
be suppressed or not taken into account. Additionally, this optimization needs an initial
estimate. As we are working in simulation, the actual parameters ρ that minimize the
convex cost function are known. If these parameters are used as initial estimate, we refer
to this optimization as “actual init”. If the estimate of the controller parameters obtained
by optimizing using the FD method with l1 = 254 are used as initial estimate, then we refer
to this optimization as “LS init”. The reason for referring to this initial estimate as “LS
init” is because it is obtained by minimizing the numerator of (3.26), which is equivalent to
minimizing (3.18). The numerator of (3.26) is the sum of squares, which is why the result
of this optimization is referred to as the least squares (LS) solution. Table 3.4 compares
the mean cost function of all the methods on the simple system with additive white noise.
For the first 3 rows, the parameters l1 that performs the best are shown. The FD method
with l1 = 23 where the transient is not suppressed performs best. Moreover, the WNLS
method achieves exactly the same results when using the “LS init” or the “actual init”.
This means that the “LS init” is a good initial estimate for the optimization.

Method J̄ |dB ¯Jmr|dB
TD (l1 = 11) -39.95 -39.92

FD transient not suppressed (l1 = 23) -40.03 -40.01
FD transient suppressed (l1 = 17) -38.95 -38.92

WNLS transient not suppressed (LS init) -37.25 -37.34
WNLS transient not suppressed (actual init) -37.25 -37.34

WNLS transient suppressed (LS init) -37.96 -37.96
WNLS transient suppressed (actual init) -37.96 -37.96

Table 3.4 – Simple system with white noise. With and without transient suppression for
the FD and WNLS methods. For the first 3 rows, the parameters l1 that yielded the best
results are displayed.

Table 3.4 showed the results for additive white noise. What will happen if the output
is perturbed by coloured noise? The results for this experiment are shown in table 3.5.
The TD method now performs better than the FD method. However, the WNLS method
outperforms the other methods in this case by a large margin. Additionally, even though
the WNLS method without transient suppression is better than the other methods, the
WNLS method with transient suppression gives a very large improvement. Also, using
the “LS init” yields exactly the same result as using the “actual init”.

Method J̄ |dB ¯Jmr|dB
TD (l1 = 7) -53.46 -53.46

FD transient not suppressed (l1 = 12) -52.62 -52.64
FD transient suppressed (l1 = 12) -52.31 -52.31

WNLS transient not suppressed (LS init) -57.04 -57.04
WNLS transient not suppressed (actual init) -57.04 -57.04

WNLS transient suppressed (LS init) -69.64 -69.64
WNLS transient suppressed (actual init) -69.64 -69.64

Table 3.5 – Simple system with coloured noise. With and without transient suppression
for the FD and WNLS methods. For the first 3 rows, the parameters l1 that yielded the
best results are displayed.
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The reason why the WNLS method works better for coloured noise than for white
noise is that the FRF estimate at all bins are equally noisy when the output is perturbed
by white noise. Thus, using a weighting doesn’t improve the quality of the controller.
However, if the noise is highly coloured, the WNLS method will be more inclined to use
the frequency bins where the noise is low to design a controller.

3.11.3 Long transient system

The long transient system is excited with the same signal as before (see section 3.11.1).
The output is perturbed with additive white Gaussian noise. Again all values of l1 between
1 and 127 are tried in the TD method and all values of l1 between 1 and 254 are tried
for the FD method. Additionally, the transient is either suppressed or not taken into
account when estimating a nonparametric representation of the FRF. Finally, the WNLS
method is also used to design the controller. A summary of the results is shown in table
3.6. In this case, the WNLS method with transient suppression gives the best results
even though the output is perturbed by white noise. This wasn’t the case for the simple
system (table 3.4). One thing to note is that 1 of the 100 optimizations didn’t converge to
a minimum for the WNLS method where the transient is not suppressed with “LS init”
as initial estimate. The failed optimization is not taken into account when calculating
the mean cost function. This shows that there is no guarantee of convergence to a global
minimum when minimizing a non-convex cost function. Another interesting thing to note
is that the FD method works better when the transient is suppressed, which wasn’t the
case for the simple system (tables 3.4 and 3.5). This is expected as this system has a
much longer transient than the simple system. Finally, the FD method with transient
suppression achieves the best results when l1 = 102. For the simple system the best results
with the FD method were achieved with l1 = 23 and l1 = 12 for white and coloured noise
respectively. This shows that more samples of the impulse response h(n, ρ) are needed when
the impulse response of the system G(Ω) is longer. In figure 3.10 the impulse responses of
the simple and the long transient systems are plotted. It is clear from this figure that l1
should be taken bigger for the long transient system.

Method J̄ |dB ¯Jmr|dB
TD (l1 = 7) -54.06 -54.06

TD (l1 = 127) -52.83 -52.85
FD transient not suppressed (l1 = 8) -46.71 -46.66

FD transient not suppressed (l1 = 254) -45.25 -45.16
FD transient suppressed (l1 = 102) -52.80 -52.80
FD transient suppressed (l1 = 254) -50.90 -50.92

WNLS transient not suppressed (LS init) -50.50 [1 failed] -50.48 [1 failed]
WNLS transient not suppressed (actual init) -50.54 -50.51

WNLS transient suppressed (LS init) -59.10 -59.11
WNLS transient suppressed (actual init) -59.10 -59.11

Table 3.6 – Long transient system with white noise. With and without transient suppres-
sion for the FD and WNLS methods. For the first, third and fifth rows, the parameters
l1 that yielded the best results are displayed.
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Figure 3.10 – Impulse response of the simple system and the long transient system.

The same experiment can be repeated with coloured noise. The summary of the results
is shown in table 3.7. The same conclusions taken for the results of table 3.6 can be applied
here. One difference is that in this case, all the 100 optimizations failed for the WNLS
method where the transient is not suppressed with “LS init” as initial estimate.

Method J̄ |dB ¯Jmr|dB
TD (l1 = 2) -65.88 -65.88

TD (l1 = 127) -64.32 -64.32
FD transient not suppressed (l1 = 2) -50.83 -50.81

FD transient not suppressed (l1 = 254) -44.76 -44.67
FD transient suppressed (l1 = 133) -63.08 -63.08
FD transient suppressed (l1 = 254) -62.82 -62.83

WNLS transient not suppressed (LS init) [all failed] [all failed]
WNLS transient not suppressed (actual init) -64.71 -64.71

WNLS transient suppressed (LS init) -82.73 -82.73
WNLS transient suppressed (actual init) -82.73 -82.73

Table 3.7 – Long transient system with coloured noise. With and without transient sup-
pression for the FD and WNLS methods. For the first, third and fifth rows, the parameters
l1 that yielded the best results are displayed.
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3.11.4 System with non realizable controller

For the system with non realizable controller, the ideal controller K∗(Ω) cannot be realized
by the proposed controller structure K(Ω, ρ). Thus, the cost function is strictly greater
than 0 for any optimization parameter ρ. As was seen in section 3.9, this means that the
original cost function, convex cost function and WNLS cost function will be minimized
for different ρ, even in the noiseless case.

Optimal controller As we are working in simulation, the FRF of the system G(Ω) is
known exactly. This knowledge can be used to get the optimal controller. The optimal
controller was found by minimizing the convex cost function (3.18) while replacing the
estimate of the FRF of the system Ĝ(Ωk) with the exact FRF of the system G(Ωk). Note
that the optimal controller will depend on the frequency resolution fs/N that the user
chooses. In this case N = 255 as in the previous experiments. One could also minimize the
original cost function (3.2). However, we assume that the approximation made to attain
the convex cost function is good enough to make little difference. The closed loop system
resulting from the optimal controller is shown in figure 3.11. If the ideal controller K∗(Ω) is
realizable by the proposed controller structure K(Ω, ρ), then the closed loop system CL(Ω)

resulting from this noiseless optimization should be exactly equal to the reference system
M(Ω). As the resulting closed loop system does not coincide with the reference model in
the figure, it is evident that the reference system M(Ω) cannot be realized by the proposed
controller structure K(Ω, ρ).
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Figure 3.11 – Reference system for the system with non realizable controller and the
optimal closed loop system.
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White noise The output is perturbed by Gaussian white noise. The results of this
experiment are shown in table 3.8. As expected, the optimal controller attains the best
results. Notice that the cost function is not zero as the reference model is not realizable
by the proposed controller structure. Note also that the convex cost J (-32.49 dB) is
almost equal to the original cost Jmr (-32.48 dB). This indicates that the approximation
made to attain the convex cost function is a good approximation. Additionally, the WNLS
method does not perform better in this case. Moreover, the WNLS method fails when the
transient is suppressed. 93 of the 100 optimizations fail when using the “LS init” as initial
estimate. 2 of the optimizations failed when using the “actual init” as initial estimate.
Finally, the best results are attained when using the FD method with l1 = 57 without
transient suppression.

Method J̄ |dB ¯Jmr|dB
Optimal -32.49 -32.48

TD (l1 = 52) -32.30 -32.31
TD (l1 = 127) -32.11 -32.13

FD transient not suppressed (l1 = 57) -32.34 -32.35
FD transient not suppressed (l1 = 254) -32.08 -32.10

FD transient suppressed (l1 = 52) -32.30 -32.30
FD transient suppressed (l1 = 254) -31.75 -31.78

WNLS transient not suppressed (LS init) -31.03 -31.01
WNLS transient not suppressed (actual init) -31.03 -31.01

WNLS transient suppressed (LS init) -30.95 [93 failed] -30.93 [93 failed]
WNLS transient suppressed (actual init) -30.96 [2 failed] -30.93 [2 failed]

Table 3.8 – System with non realizable controller with white noise. With and without
transient suppression for the FD and WNLS methods. For the second, fourth and sixth
rows, the parameters l1 that yielded the best results are displayed.
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Coloured noise The same experiment is performed with coloured noise. The results are
shown in table 3.9. The optimal controller performs the best as expected. This optimal
controller is available to us because we are working in simulation. Next, the WNLS method
without transient suppression results in the worst controllers. 32 of the 100 optimizations
failed for the WNLS method with transient suppression when using the “LS” init as initial
estimate. 25 optimization failed when using the “actual init” as initial estimate. Finally,
the TD method with l1 = 118 performs the best. Another thing to note is that the FD
method with transient suppression works better than the FD method without transient
suppression. This wasn’t the case when the output was perturbed with white noise (table
3.8). This shows that taking the noise transients into account can give us better results.

Method J̄ |dB ¯Jmr|dB
Optimal -32.4885 -32.4837

TD (l1 = 118) -32.4709 -32.4676
TD (l1 = 127) -32.4707 -32.4675

FD transient not suppressed (l1 = 221) -32.4623 -32.4603
FD transient not suppressed (l1 = 254) -32.4620 -32.4602

FD transient suppressed (l1 = 118) -32.4685 -32.4648
FD transient suppressed (l1 = 254) -32.4658 -32.4631

WNLS transient not suppressed (LS init) -30.3885 -30.3817
WNLS transient not suppressed (actual init) -30.3885 -30.3817

WNLS transient suppressed (LS init) -29.85 [32 failed] -29.81 [32 failed]
WNLS transient suppressed (actual init) -29.72 [25 failed] -29.66 [25 failed]

Table 3.9 – System with non realizable controller with coloured noise. With and without
transient suppression for the FD and WNLS methods. For the second, fourth and sixth
rows, the parameters l1 that yielded the best results are displayed.



CHAPTER 3. MODEL REFERENCE CONTROL 56

3.12 Conclusion

Three different methods were used to design a controller that gets the closed loop system
as close as possible to a user-defined reference system M(Ω): the TD, FD and WNLS
methods. The FD and WNLS methods need a nonparametric estimate of the FRF of the
system G(Ω). For this nonparametric estimate the system and noise transients can be
suppressed or not taken into account. Additionally, the TD and FD methods can employ
the l1-trick that allows for a reduction in bias.

The WNLS method with transient suppression gave the best results when the refer-
ence model M(Ω) can be realized perfectly by the proposed controller structure K(Ω, ρ).
However, there is no guarantee that the optimization will converge to the global minimum.

Applying the WNLS method when the reference cannot be realized perfectly leads
to suboptimal results. In this case, the TD method usually performs better than the
FD methods. When the system has a long transient and/or noise transients are present,
the FD method performs better when the transient is suppressed. The FD method with
transient suppression yielded the best results when the output was perturbed by white
noise (table 3.8, fourth row). However, when the l1-trick is not used, the TD method works
better than the FD method (table 3.8, third and fifth rows). We mention this here because
it is hard to determine which value of l1 will yield the best results. In the simulations,
the FRF of the system G(Ω) is known exactly, which allows us to compare all values of l1.
Thus, when working with real measurements, one would probably just use the maximum
value of l1 unless one has some prior knowledge of the system.

Thus we can conclude that the TD method works the best on DT systems, unless the
reference model is realizable. If the reference model is realizable, then the WNLS method
performs the best. Note however, that the TD method only works on DT systems. If one
wants to design an analog controller for a CT system, the TD method will not work. In
this sense, the proposed FD method is more general than the TD method.



Appendix
3.A Division by auto-power spectrum

In section 3.5, the following filter is defined.

W (q−1) =
F (q−1)(1−M(q−1))

SUU (q−1)

with SUU (q−1) being a parametric representation of the auto-power spectrum of u(n).
If u(n) is DT filtered white noise u(n) = Su(q−1)eu(n) and a parametric representation

of Su(q−1) is known, then the auto-power spectrum of u(n) becomes

SUU (q−1) = Su(q−1)Su(q)

The zeros of Su(q−1) and Su(q) have an inverse relationship. If a is a zero of Su(q−1), then
a−1 is a zero of Su(q). These zeros then become poles of W (q−1). Thus, if Su(q−1) contains
zeros that are not on the unit circle, the filter W (q−1) will be unstable. And so, applying
the filter in the time domain is in general not possible.

57
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3.B DFT of cross-correlation

The circular cross-correlation of two discrete signals x and y is defined by [6, eq. (2.22) ]

Rxy(τ) =

N−1∑
n=0

x(n)y(mod(n+ τ,N)) (3.28)

Taking the DFT of (3.28) gives

SXY (k) =
1

N

N−1∑
τ=0

Rxy(τ)e−j2πkτ/N =
1

N

N−1∑
τ=0

N−1∑
n=0

x(n)y(mod(n+ τ,N))e−j2πkτ/N

=
1

N

N−1∑
n=0

x(n)

N−1∑
τ=0

y(mod(n+ τ,N))e−j2πkτ/N

=
1

N

N−1∑
n=0

x(n)ej2πkt/N
N−1∑
τ=0

y(mod(n+ τ,N))e−j2πk(n+τ)/N

The second sum is actually independent of n.

N−1∑
τ=0

y(mod(n+ τ,N))e−j2πk(n+τ)/N =
N−t−1∑
τ=0

y(n+ τ)e−j2πk(n+τ)/N

+

N−1∑
τ=N−t

y(n+ τ −N)e−j2πk(n+τ)/N

=

N−t−1∑
τ=0

y(n+ τ)e−j2πk(n+τ)/N

+

−1∑
τ=−t

y(n+ τ)e−j2πk(n+τ+N)/N

=

N−t−1∑
τ=−t

y(n+ τ)e−j2πk(n+τ)/N

In the last step we used the fact that e−j2πk(n+τ+N)/N = e−j2πk(n+τ)/N . Now by doing one
last substitution we get

N−1∑
τ=0

y(mod(n+ τ,N))e−j2πk(n+τ)/N =

N−1∑
τ=0

y(τ)e−j2πkτ/N

This equation is valid because the sum runs over all the samples 0, . . . , N − 1. Finally, the
DFT of the cross-correlation is

SXY (k) =
1

N

N−1∑
n=0

x(n)e−j2πkt/N
N−1∑
τ=0

y(τ)e−j2πkτ/N

⇒ SXY (k) = NX(k)Y (k)
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3.C Unstable systems

Open loop experiments are not practical on unstable systems. If we want to measure
the FRF of an unstable system, it will have to be done in closed loop with a stabilizing
controller. As discussed in section 2.15.3, the danger here is that process noise on the
output will be fed back to the input. Not taking the right precautions will lead to an
inconsistent nonparametric estimate of the FRF in some cases.

First, a quick summary of the solution given in [1] will be discussed. Then it will be
shown that a nonparametric estimate of the FRF is again hidden in the maths.

3.C.1 Correlation-based approach

Model The set-up shown in figure 3.C.1 is considered. An unstable system G(q−1) is
stabilized by a controller Ks(q

−1) in negative feedback. The reference signal r(n) is entered
between the controller and the system. The reference signal is assumed to be periodic.
The input to the system is u(n) and the output of the system y(n) is perturbed by process
noise v(n). The signal x(n) is the reference signal that would be used in the actual closed
loop system. However, to keep the notation similar to [1], x(n) is set to 0. The closed loop
TF from x(n) to y(n) is

Ms(q
−1) =

Ks(q
−1)G(q−1)

1 +Ks(q−1)G(q−1)

G(q-1)

v(n)

y(n)
u(n)

-

r(n)

KS(q-1)x(n)
+

Figure 3.C.1 – Unstable LTI system with a stabilizing controller in feedback.

Error signal The error signal is the same as in section 3.5.

ε(n, ρ) = Mu(n)−K(ρ)(1−M)y(n)

Reference filtering This time, the reference signal r(n) is filtered instead of the input
to the system u(n). The filter W (q−1) which is used to obtain rW (n) is defined differently
this time.

W (e−jω) =
F (e−jω)(1−M(e−jω))

(1−Ms(e−jω))SRR(e−jω)
(3.29)

with SRR(e−jω) being the auto-power spectrum of the reference signal. It is pointed out
in [1] that W (e−jω) cannot be implemented in this way, because Ms is not known as we
don’t have access to a parametric representation of G. This is solved in the following way.
First, u(n) is written as a function of r(n) and v(n).

u(n) =
1

1 +KsG
r(n)− Ks

1 +KsG
v(n)

Assuming that there is no noise v(n) = 0 and rewriting 1 +KsG in terms of Ms, gives

u(n) = (1−Ms)r(n)
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Hence, there is a relation between the auto-power spectrum of r(n) and the cross-power
spectrum between r(n) and u(n).

SRU (e−jω) = (1−Ms(e
−jω))SRR(e−jω)

And so (3.29) becomes

W (e−jω) =
F (e−jω)(1−M(e−jω))

SRU (e−jω)

SRU (e−jω) can be estimated from the data and the filter can be applied to r(n) in the FD
to obtain rW (n).

Correlation criterion Then, the cross-correlation between rW (n) and ε(n, ρ) is calcu-
lated.

RrW ε(τ, ρ) =
1

NP

NP−1∑
n=0

rW (n− τ)ε(n, ρ)

with P being the number of periods measured. The cost function can then be calculated
by using (3.12).

3.C.2 Nonparametric estimate

The error signal in the FD becomes

E(kP, ρ) = M(Ωk)U(kP )−K(Ωk, ρ)(1−M(Ωk))Y (kP )

Here, because the reference signal is periodic, the frequencies Ωk correspond to the DFT
bins kP . For the rest of this section, the frequencies Ωk will be left out from the equations
for clarity. The filtered reference signal becomes

RW (kP ) =
F (1−M)R(kP )

R(kP )U(kP )

Then the cross-power spectrum between ε(n, ρ) and rW (n) is

SRWE(Ωk, ρ) = RW (kP )E(kP, ρ) = F (1−M)
[
M
U(kP )R(kP )

U(kP )R(kP )
−K(ρ)(1−M)

Y (kP )R(kP )

U(kP )R(kP )

]
= F (1−M)[M −K(ρ)(1−M)Ĝ(Ωk)]

with

Ĝ(Ωk) =
Y (kP )R(kP )

U(kP )R(kP )
=
Y (kP )

U(kP )
(3.30)

If Ĝ is replaced by the actual system G, SRWE(Ωk, ρ) is exactly the quantity being integrated
over in (3.5). As was discussed in section 3.5, (3.30) is equivalent to taking the DFT of
every period and taking the mean of the spectra over the periods.

Ĝ(Ωk) =
1
P

∑P−1
p=0 Y

(p)(k)

1
P

∑P−1
p=0 U

(p)(k)

Note that this estimate is consistent when the excitation is periodic. For arbitrary exci-
tations it is inconsistent. It is interesting to see that the unsimplified fraction in (3.30)
looks like the indirect method for estimating the FRF (see section 2.15.3).

Ĝ(Ωk) =
1
P

∑P
m=0 Y

(m)(k)R(m)(k)
1
P

∑P
m=0 U

(m)(k)R(m)(k)

This FRF estimate is consistent when using arbitrary excitations.



Chapter 4

Guaranteed stability
4.1 Introduction

Model reference control allows the user to design a controller without the need to estimate
a parametric model of the open loop system. However, the stability of the closed loop
system is not guaranteed when minimizing (3.2) or (3.5). If a parametric representation
of the TF of an LTI system is known, then the stability of the closed loop system can be
inferred by analysing the poles of the closed loop system. As long as none of the poles are
in the right half plane of the complex plane for CT systems, then the closed loop system
is stable. To ensure the stability for DT system, none of the poles are allowed to be
outside of the unit circle in the complex plane. In data-driven model reference control, the
locations of the poles are unknown, which means we must find another way to guarantee
the stability of the closed loop system. The following is a detailed repetition of the idea
presented in [1]. We will first give a small explanation of the small-gain theorem and will
then show how this theorem can be used to guarantee the stability in data-driven model
reference control.

4.2 Small-gain theorem

The small-gain theorem can be seen as a generalization of the Nyquist criterion to nonlinear
time-varying system [7]. Assume that we have an interconnection of 2 stable LTI systems
as shown in figure 4.1.

Figure 4.1 – An interconnection of 2 stable LTI systems.

A specific case of the small-gain theorem [8] states that the interconnection of these
two stable LTI systems is stable if

||G(Ω)∆(Ω)||∞ < 1 (4.1)

with || • || being the H-infinity norm of an LTI system defined as

||H(Ω)||∞ =

{
supω |H(jω)| for CT systems

supω |H(ejω)| for DT systems

Example Consider a simple example of a CT system being controlled with a propor-
tional controller in negative feedback.

G(s) =
1

s+ 2

∆(s) = KP

61
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Then

|G(jω)∆(jω)|2 =
∣∣∣ 1

jω + 2
KP

∣∣∣2 =
K2
P

ω2 + 4
(4.2)

The quantity (4.2) must be smaller than 1 for all ω ∈ R.

⇒K2
P < ω2 + 4 ∀ω ∈ R

⇔K2
P − 4 < ω2 ∀ω ∈ R

If the above inequality holds for ω = 0, then the above inequality holds for all ω ∈ R.

K2
P − 4 < 0⇒ −2 < KP < 2 (4.3)

According to the small-gain theorem, choosing KP between -2 and 2 will guarantee the
stability of the closed loop system. Let’s now compare this result to the traditional way
of determining whether the closed loop system is stable: by analysing the location of the
closed loop poles. The closed loop system is given by

G(s)

1 + G(s)∆(s)
=

1
s+2

1 + KP
s+2

=
1

s+ 2 +KP

The location of the closed loop pole is −(2 +KP ). To ensure stability, the real part of the
pole must be smaller than 0

− (2 +KP ) < 0⇒ −2 < KP (4.4)

The bounds (4.3) are contained in the bounds (4.4). Thus, we can conclude that the sta-
bility bounds given by the small-gain theorem are much more conservative. For example,
choosing KP = 4 will still result in a stable closed loop system. The nice thing about the
small-gain theorem, is that it is sufficient to have a nonparametric estimate of the FRF
of G(Ω) and ∆(Ω) in order to determine whether the closed loop system will be stable.
Contrast this with the need to know the location of the poles of G(Ω) to get to (4.4).

4.2.1 Stability constraints

In data-driven model reference control, the user does not have access to a parametric
representation of the TF of the system G(Ω). However, we can estimate the FRF of the
system nonparametrically. This nonparametric estimate can be used to guarantee stability
by using the small-gain theorem.

Looking back at figure 3.1, we can see that G(Ω) = K(Ω, ρ)G(Ω), ∆ = 1, r1 = r − v and
r2 = 0. In order to use the small-gain theorem, G and ∆ must be stable. As K(Ω, ρ) is
stable by construction, this means that G(Ω) must be stable. Thus, the stability cannot
be guaranteed when G(Ω) is unstable. If G(Ω) is stable, then the closed loop system is
stable if

||K(Ω, ρ)G(Ω)||∞ < 1

The problem with this constraint is that it cannot be realized in practice. The quantity
|K(Ω, ρ)G(Ω)| must be smaller than 1 for all frequencies. In reality, a nonparametric
estimate has a certain frequency resolution fs/N , with fs being the sampling frequency
and N being the number of samples in 1 period of the excitation signal. Thus, the user
must ensure that the frequency resolution is high enough to not miss any resonance peaks
in the FRF. With this in mind, the constraint turns into

|K(Ωk, ρ)Ĝ(Ωk)| < 1 , ∀k ∈ Kexc

with Ĝ(Ωk) being the estimate of the FRF of G(Ω) at the k-th DFT bin and Kexc being
the set of excited harmonics.
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The optimization can then be done in the following way:

ρ̂ = arg min
ρ

J(ρ)

subject to |K(Ωk, ρ)Ĝ(Ωk)| < 1 ∀k ∈ Kexc

with J(ρ) being the TD cost function (3.12), FD cost function (3.18) or the FD cost
function with l1-trick (3.27). As the cost function is a convex function and the constraints
are convex, the optimization problem as a whole is also convex, meaning that it can be
solved with a convex solver.

4.2.2 Better stability constraints

The stability constraints discussed in the previous section are very conservative. We can
do better. The closed loop system that is shown in figure 3.1 can be redrawn as shown in
figure 4.2. The reference signal r was grouped together with the output noise v and the
controller was split up into 2 branches by using K(ρ) = (K(ρ) −K∗) + K∗, with K∗ being
the ideal controller that might not be realizable by the proposed controller structure K(ρ).

+

-

Figure 4.2 – Redrawing figure 3.1 by using K(ρ) = (K(ρ) −K∗) + K∗ and by grouping
the reference r with the output noise v.

The next step involves shifting the system G(Ω) into the 2 newly created branches.
This is shown in figure 4.3.

+

-

Figure 4.3 – Redrawing figure 4.2 by shifting G(Ω) to the left.

Finally, by playing around with the summations we arrive at the block diagram shown
in figure 4.4.

+

-

+

-

Figure 4.4 – Redrawing figure 4.3 by playing around with the summations.
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With a little bit of imagination, we can see that this is an interconnection of 2 systems.

G =
1

1 +K∗G
= 1−M

∆ = (K(ρ)−K∗)G

The system G is the TF between the output of the first summer and e. To use the small-
gain theorem, both G and ∆ must be stable systems. G is stable because M is stable by
construction. Showing that ∆ is stable is a bit more involved. This is because K∗ is not
necessarily stable and causal. Using

K∗ =
M

G(1−M)

we can expand ∆

∆ = K(ρ)G− M

G(1−M)
G = K(ρ)G− M

1−M

The first term K(ρ)G is stable because K(ρ) is stable by construction and because G is
also assumed to be stable. If G is not stable, then the small-gain theorem cannot be used.
The second term is not necessarily stable M

1−M . However, it can be chosen by the user in
such a way that it is stable. The fact that M

1−M must be stable is not mentioned in [1,
Lemma 1].

Finally, if G and ∆ are stable, the small-gain theorem says that the stability of the
closed loop system is guaranteed if

||G∆||∞ < 1

⇔
∣∣∣∣∣∣(1−M)

(
K(ρ)G− M

1−M
)∣∣∣∣∣∣
∞
< 1

⇔||(1−M)K(ρ)G−M ||∞ < 1

⇔||M − (1−M)K(ρ)G||∞ < 1

The optimization can then be done with these constraints

ρ̂ = arg min
ρ

J(ρ)

subject to |M(Ωk)− (1−M(Ωk))K(Ωk, ρ)Ĝ(Ωk)| < 1 , ∀k ∈ Kexc

Again, the same rules apply here: the frequency resolution fs/N must be high enough to
not miss any resonance peaks. J(ρ) can be one of the cost function mentioned in section
4.2.1. These constraints are also convex, which makes the optimization problem convex.
Thus, it can be solved with a convex solver.

These constraints are less conservative than the constraints from section 4.2.1 for the
following reason. If Ĝ is replaced by the exact system G and if K(ρ) is replaced by the
ideal controller K∗ then

M − (1−M)K∗G = M − (1−M)
M

1−M
= 0

which means that the constraints are fulfilled. Thus, M − (1 −M)K(ρ)G is a measure of
how close the closed loop system is to the stable reference model. This is also evident by
noticing that M − (1−M)K(ρ)G is contained inside the convex cost function.

J(ρ) =
∣∣∣∣∣∣F (1−M))

[
M − (1−M)K(ρ)G

]∣∣∣∣∣∣2
2



Chapter 5

Real experiment
5.1 Introduction

The goal of this experiment is to use data-driven model reference control to design an
analog controller for a CT system. The open loop system is shown in figure 5.1. It is a
Wiener-Hammerstein system. This is a system that consists of a series connection of 2
LTI systems with a nonlinear static system in between them.

Figure 5.1 – Picture of the Wiener-Hammerstein system.

A diagram of the measurement set-up is shown in figure 5.2. This measurement set-up
is a band-limited set-up (section 2.8.2). The device-under-test (DUT) can be the Wiener-
Hammerstein system G(s), the controller K(s) or the closed loop system.

Figure 5.2 – Diagram of the measurement set-up

65
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5.1.1 Nonparametric estimate

The first step in this experiment is to get a nonparametric estimate of the FRF of the
system G(s). However, the Wiener-Hammerstein system is nonlinear. This means that the
system cannot be represented by a TF. However, we can find the best linear approximation
(BLA) of the system GBLA. With an intelligently designed excitation signal, it is possible
to suppress the non-linearities in the input and output signals [4]. Neglecting the transient
term, we can say that the output spectrum contains 3 contributions if it is excited by an
input U(k):

� A linear contribution from GBLA(Ωk)U(k)

� A random noise contribution that doesn’t depend on the input NY (k)

� A nonlinear distortion term that does depend on the input YS(k)

Thus, we can write
Y (k) = GBLA(Ωk)U(k) +NY (k) + YS(k)

If we apply the input for P periods we get

Y (p)(k) = GBLA(Ωk)U(k) +N
(p)
Y (k) + YS(k) , p = 1, . . . , P

Only the random noise contribution differs from period to period. As the nonlinear dis-
tortions depend on the input, they will be the same for every period. In this way, we
are blind to the nonlinear distortions. They will remain in our estimate of the best lin-
ear approximation ĜBLA even if we apply the excitation signal for an infinite amount of
periods.

The solution to this problem is to design M realizations of the excitation signal. More
specifically, in the case of multisine excitations, this means that multiple multisines must
be designed with different random phases for every excited harmonic. The amplitude of
the sine components can be the same for every realization.

U (m)(k) = Ake
jφ

(m)
k , φ

(m)
k ∼ U(0, 2π) , m = 1, . . . ,M

These M different realizations can be applied for P periods. The output spectrum for the
p-th period of the m-th realization is then given by

Y (m,p)(k) = GBLA(Ωk)U (m)(k) +N
(m,p)
Y (k) + Y

(m)
S (k)

The random noise contribution is different for every period of every realization. The
nonlinear distortions are different for every realization. Dividing the output spectrum by
the input spectrum gives us a nonparametric estimate of the FRF of GBLA for every period
of every realization.

Ĝ(m,p)(Ωk) =
Y (m,p)(k)

U (m)(k)
= GBLA(Ωk) +

N
(m,p)
Y (k)

U (m)(k)
+
Y

(m)
S (k)

U (m)(k)

Now, as a result of applying multiple realizations of the input signal, the nonlinear dis-
tortions can be isolated from the linear contributions and suppressed. This results in a
better estimate of the FRF of the best linear approximation.

More information on how to estimate the FRF of the best linear approximation can be
found in [4, Chapter 4]. With that said, a multisine was applied to the Wiener-Hammerstein
system by using the measurement set-up shown in figure 5.2.
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The excitation signal had the following properties:

� Sampling frequency: fs = 78.125 kHz

� Samples per period: N = 2048

� Periods per realization: P = 2

� Number of realizations: M = 20

� Excited harmonics: Kexc = {k ∈ N : 1 ≤ k ≤ 262}

� Input RMS: VRMS = 100 mV

� Sine component amplitude: A(1)
k = . . . = A

(M)
k = constant , ∀k ∈ Kexc

� Sine component phases: φ(m)
k ∼ U(0, 2π) , m = 1, . . . ,M , ∀k ∈ Kexc

The 262-nd harmonic corresponds to the maximum excited frequency

fmax = 262
fs
N

= 9994.5 Hz ≈ 10 kHz

The measurement set-up automatically waits for the system to be in steady state be-
fore taking measurements. However, noise transients can still be present in the input and
output spectra. Therefore, the Robust LPM is used to obtain a nonparametric estimate
of the FRF of the system at the excited frequencies. Additionally, because multiple real-
izations are measured, the Robust LPM can discern between the noise variance and the
nonlinear distortions.

Using the heuristics mentioned in section 2.14.5, the order and degrees of freedom best
suitable for the Robust LPM can be determined. After applying the Robust LPM for
different values of the order and the degrees of freedom, it was observed that increasing
either of these parameters doesn’t decrease the total estimated variance of the FRF. Thus
the default parameters R = 2 and qnoise = 1 are used. The nonparametric estimate of the
FRF of the best linear approximation of the Wiener-Hammerstein system is shown in figure
5.3. The nonlinear distortion are clearly dominant over the random noise contributions.
This is the reason why M = 20 realizations were measured.
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Figure 5.3 – Nonparametric estimate of the FRF of the best linear approximation of the
Wiener-Hammerstein system.



CHAPTER 5. REAL EXPERIMENT 68

5.1.2 Controller design

Now that we have a nonparametric estimate of the FRF of GBLA(s), we can design an
analog controller for it.

After experimenting with multiple reference models M(s) and controller structures
K(s, ρ), the following resulted in a suitable closed loop system.

M(s) = M1(s)M2(s)

with M1(s) =
ω2

1

s2 + 2ω1s+ ω2
1

, ω1 = 2π 5000 Hz

and M2(s) =
ω2

2

s2 + 2ω2s+ ω2
2

, ω2 = 2π 8000 Hz

K(s, ρ) = ρ0 +
ρ1

s
+ ρ2s+ ρ3s

2

Additionally, the optimization ignores the frequencies larger than 4 kHz.

F (jω) =

{
1 if |ω| ≤ 2π 4 kHz

0 if |ω| > 2π 4 kHz

This was done because there is a transmission zero between 5 kHz and 6 kHz (figure 5.3).
The gain of the controller would need to be infinite at that frequency in order to compen-
sate for this.

The FD cost function (3.18) was optimized without any constraints. The optimal
parameters are

ρopt =


ρ0

ρ1

ρ2

ρ3

 =


2.580

4533 sec−1

1.443.10−3 sec

1.775.10−8 sec2


The closed loop system that would result from this controller can then be determined
nonparametrically using

CL(jωk) =
K(jωk, ρopt)ĜBLA(jωk)

1 +K(jωk, ρopt)ĜBLA(jωk)
(5.1)

The resulting closed loop system is shown in figure 5.4. The proposed controller structure
K(s, ρ) cannot realize the reference model M(s) perfectly. However, the optimal closed
loop system CL(s) remains close to the reference model until 4 kHz.
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Figure 5.4 – Nonparametric estimates of the FRF of GBLA(s), the reference model M(s),
the closed loop system CL(s) and the stability criteria [M − (1−M)K(ρopt)G].

Additionally, the stability criteria [M − (1−M)K(ρopt)G] are also plotted in figure 5.4.
This quantity is below 1 in amplitude (0 dB) for all excited harmonics Kexc, which means
that the stability of the closed loop system might be guaranteed. To guarantee the stability
of the closed loop system, the system GBLA must be stable. This is the case. Moreover,
M(s)

1−M(s) must also be stable. The poles of M(s)
1−M(s) are shown in figure 5.5. None of the poles

are in the right half plane, which means that M(s)
1−M(s) is stable. Finally, we have only shown

that [M − (1−M)K(ρopt)G] is below 1 in amplitude for the excited frequencies. Therefore,
we must also assume that the frequency resolution fs/N is high enough to ensure that no
resonance peaks are missed. We must also assume that [M − (1 −M)K(ρopt)G] remains
below 1 in amplitude for f > 10 kHz. Assuming these things, the stability of the closed
loop system is guaranteed.

-10 -8 -6 -4 -2 0

Real axis (seconds
-1

) 10
4

-4

-2

0

2

4

Im
a
g
in

a
ry

 a
x
is

 (
s
e
c
o
n
d
s

-1
)

10
4 Location of the poles of M/(1-M)

Figure 5.5 – Location of the poles of M(s)
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5.1.3 Controller realization

The analog controller is built using TL074 operational amplifiers (OPAMP). The schematic
is shown in figure 5.6. The capacitor in the integrator has a resistor in parallel in order
to limit the DC gain of the integrator. Extra components were also added to the second
differentiator to limit the high-frequency (HF) gain as it was observed experimentally that
the output of the second differentiator was very noisy without those components.

The controller was simulated in LTspice XVII.1 The FRF of the simulated analog
controller is compared to the optimal controller K(ρopt) in figure 5.7. The red dotted line
shows the FRF of the simulated controller if no extra resitor and capacitor are added to the
second differentiator. The gain almost reaches 120 dB. However, in this case, the HF gain
still goes to zero due to the limitations of the TL074 OPAMPs. The blue dash-dotted line
shows the simulated controller with the components added to the second differentiator.
The maximal gain decreases significantly. Finally, the discrepancy in the low frequencies
is due to the finite DC gain of the integrator. In the frequency range of interest, which is
between 10 Hz and 10 kHz, the difference between the optimal controller and the simulated
controller is not very significant.
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Figure 5.7 – Optimal controller K(ρopt) vs. the simulated controller from figure 5.6, with
and without added resistor and capacitor to the second differentiator.

1https://www.analog.com/en/design-center/design-tools-and-calculators/

ltspice-simulator.html (visited on 3 August 2020)

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
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Figure 5.6 – Schematic of the controller.
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Figure 5.8 – Built controller.

The controller was soldered on a stripboard. The realized controller is shown in figure
5.8.

The controller was measured with the measurement set-up (figure 5.2). The excitation
has the same properties as the excitation signal in section 5.1.1, except for one thing:
the sine component amplitude is not flat. The amplitudes Ak were shaped such that the
energy is high at frequencies where the gain is expected to be low. The amplitudes are
inversely proportional to the magnitude of the optimal controller K(ρopt). The energy of
the signal is also different. It is now 29.3 mVRMS. The amplitude spectrum of the input
excitation used to measure the controller is shown in figure 5.9.
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Figure 5.9 – Amplitude spectrum of one period of one realization of the input excitation
used to measure the controller.
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The nonparametric estimate of the FRF of the analog controller is shown in figure 5.10.
The realized controller does not conform to the optimal controller K(s, ρopt). However, as
will be explained further, we believe these measurements to be invalid.
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Figure 5.10 – Nonparametric estimate of the FRF of the analog controller.



CHAPTER 5. REAL EXPERIMENT 74

5.1.4 Closed loop

Next, the Wiener-Hammerstein system was connected to the controller in closed loop with
unity negative feedback (figure 3.1). The same properties of the excitation signal that were
used in sections 5.1.1 and 5.1.2 are used here. One exception is the shape of the amplitude
spectrum Ak. The best linear approximation of the Wiener-Hammerstein system depends
on the energy of the input to that system as it is nonlinear. The reference signal was
shaped in order to make sure that the input to the system is close to flat with an energy of
100 mVRMS. Now the amplitude spectrum of the reference signal is inversely proportional
to the magnitude of the TF between the reference and the input to the system, which

is ĜBLA(jωk)

1+K(jωk,ρopt)ĜBLA(jωk)
. This also changes the energy of the reference signal. It is now

42.9 mVRMS. The resulting nonparametric estimate of the FRF of the closed loop system
is shown in figure 5.11. The result is quite close to the optimal closed loop FRF (5.1).
Moreover, the closed loop system is stable.
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Figure 5.11 – Nonparametric estimate of the FRF of the closed loop system.
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The success of the measurement of the closed loop system suggests that the nonpara-
metric estimate of the FRF of the analog controller is invalid. We can estimate the FRF
of the analog controller indirectly from the estimated closed loop FRF ĈL(jωk) and the
estimated FRF of the best linear approximation of the system ĜBLA(jωk).

K̂indirect(jωk) =
ĈL(jωk)

ĜBLA(jωk)(1− ĈL(jωk))

The indirect estimate of the FRF of the controller is shown in figure 5.12. The controller
is very close to the optimal controller. The indirect estimate spikes around 5.6 kHz, but
this is just because the FRF of the system and the FRF of the closed loop system are zero
around that frequency, which results in a division of zero by zero.
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Figure 5.12 – Indirect estimate of the FRF of the controller from ĈL(jωk) and GBLA(jωk).

5.2 Conclusion

The FD method was used to design an analog controller for a Wiener-Hammerstein system.
The stability constraints were used to guarantee the stability of the closed loop system.
Then, the analog controller was constructed successfully. Finally, the analog controller and
closed loop system were measured. However, the measurement of the analog controller
was not successful. The cause of this failure is unknown.



Conclusion
This work started with a summary of basic and advanced methods for estimating nonpara-
metric models of LTI systems. Then, a review of data-driven model reference control was
given. The cost functions were formulated in the time domain. However, by translating
these formulations into the frequency domain it becomes clear that nonparametric models
are hidden in the maths.

We then proposed to combine advanced methods for estimating nonparametric models
with data-driven model reference control. A weighted nonlinear least squares cost function
was also proposed. The time domain, frequency domain and weighted nonlinear least
squares methods were applied to discrete-time systems. The weighted nonlinear least
squares method greatly improves the quality of the controller in the case that the ideal
controller is realizable. However, in most cases the original time domain method works
better than the others.

The advantage of the proposed frequency domain method is that it is more general as it
can also be applied to continuous-time systems. A nonparametric model of a continuous-
time system was estimated and this was used to design an analog controller. Moreover,
a review was given of constraints that guarantee the stability of the closed loop system.
These constraints were used to verify that the designed controller would not destabilize
the system.

Future work Model reference control is useful for finding a controller when input-output
data of the uncontrolled system are available. This input-output data can be used to find
a nonparametric model of the frequency response function of the system, which can then
be used to find a suitable controller. However, it is still useful to have a parametric model
of the system for the sake of interpretation.

An area where model reference control could be beneficial is in the control of time-
varying systems. A linear parametric model can be estimated for the system, which can
be used to design a controller. Afterwards, the controller can be adapted over time by
using model reference control. This way, the interpretability of parametric models and
the simplicity of nonparametric models can be combined into an adaptive control scheme.
Employing nonparametric estimation of time-varying systems might also prove to be useful
in this regard [9].

Contributions This work started when my supervisors pointed me to a paper com-
paring model-based and data-driven control [10]. In that paper, the correlation-based
approach was mentioned. This led me to a paper on model reference control [1]. I was
able to recreate the results presented in that paper. Afterwards, while trying to under-
stand the correlation-based approach in depth, I noticed that nonparametric models of the
frequency response function of the uncontrolled system were hiding in the mathematics.
This then led to the use of more advanced nonparametric frequency domain methods.
Finally, I realized that working in the frequency domain also allows for a generalization of
the methods to continuous-time systems.
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Software
The simulations in this thesis were coded in MATLAB [11]. The Frequency Domain
toolbox [4] supplied the necessary functions needed for estimating nonparametric models
of the FRF with the robust LPM. The IniConfig class for MATLAB [12] was very helpful
in keeping everything organized. The Multi-Parametric Toolbox for MATLAB [13] was
useful for doing convex optimization. Finally, LTspice XVII was used for simulating the
analog controller before soldering it.
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